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Abstract— Robots that cooperate and interact with humans
require the capacity to detect and track people, analyze their
behavior and understand human social relations and rules. A
key piece of information for such tasks are human attributes
like gender, age, hair or clothing. In this paper, we address
the problem of recognizing such attributes in RGB-D data
from varying full-body views. To this end, we extend a recent
tessellation boosting approach which learns the best selection,
location and scale of a set of simple RGB-D features. The
approach outperforms the original approach and a HOG base-
line for five human attributes including gender, has long hair,
has long trousers, has long sleeves and has jacket. Experiments
on a multi-perspective RGB-D dataset with full-body views of
over a hundred different persons show that the method is able
to robustly recognize multiple attributes across different view
directions and distances to the sensor with accuracies up to
90%. Our methods runs in real-time, achieving a classification
rate of around 300 Hz for a single attribute.

I. INTRODUCTION

The ability to describe and reidentify individual persons
that interact with a robot is an important perceptual skill for
robots in human environments, for example, when providing
personalized services. The task of extracting human attributes
such as gender, age group, or clothing-related attributes from
a person’s appearance is relatively unexplored for RGB-D
data although particularly relevant for robotics. Unlike meth-
ods that rely on image data only, which may strongly suffer
from varying illumination conditions when deployed on a
mobile robot, RGB-D data are typically less sensitive to
indoor ambient conditions and provide 3D point clouds that
allow for the extraction of geometric cues in addition to
visual appearance. There is a limited number of works in
this area, focussing e.g. on gender recognition [1], color-
based clothing attributes [2], person re-identification [3], [4],
or requiring accurate on-line estimates of the skeleton joint
angles [5].

In this paper, we extend our previous work on full-body
human gender recognition in RGB-D data [1] for the task
of more generally recognizing human attributes. Concretely,
we make the following contributions:
• We propose a novel and particularly efficient recogni-

tion approach for human attributes from RGB-D data.
This is achieved by extending a tessellation boosting
approach, originally developed for people detection in
3D data, with geometric extent features and RGB color
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Fig. 1. Extracted RGB-D point clouds with corresponding classification
results for three different human attributes. The text at the top of each image
is the attribute in question and the number below each image the confidence
of the boosted classifier, where the sign indicates an association with the
negative or positive class.

features from multiple color spaces. While simple and
fast to compute, the color features alone are able to
clearly improve classification accuracy for several types
of attributes.

• Pre-processing: We scale the input person cloud so as
to ensure that it fills the bounding volume used during
training and we apply a voxel filter on the generated
tessellations before boosting which reduces the feature
descriptor length significantly, typically by 80%. This
results in improved classification accuracies and reduced
memory consumption and classifier training times.

• We evaluate our approach on a large dataset with
RGB-D point clouds of 118 persons in both standing
and walking poses under various view angles and dis-
tances to the sensor. To this end, we extended the dataset
– first presented in [1] – with annotations of multiple
human attributes such as has long trousers, has long
sleeves, has long hair.

II. RELATED WORK

Previous research on human attribute recognition mainly
focusses on the detection of single attributes like gender [6]–
[9], many of them use specialized methods applied to frontal
face images. State-of-the-art methods achieve up to 90%
accuracy for gender on large datasets with several thousands
of training images.

A smaller group of works use full-body views which is
challenging due to the high variability in human appearance,
posture, and distance from the sensor. Out of these, only few
exploit 3D or RGB-D data [1], [4], [10].

Recently, progress has been made in extracting more
localized, appearance-based human attributes from image



data. Bourdev et al. [11] learn 1200 poselets, which represent
small parts of the human body under a specific pose, in
order to decompose view point and pose from appearance
and recognize attributes which describe gender, hair style,
and clothing of a person in color image data. The feature
vectors computed on the poselets, which are then fed into
three layers of SVM classifiers, incorporate histogram of
oriented gradients (HOG), HSB color histogram and skin
mask features. Example attributes include is male, has hat,
has t-shirt, has shorts, has glasses, or has long pants. The
authors report an average precision (AP) of around 82.4% for
gender, 73% for long hair, 74% for long sleeves and 90%
for long pants on a database of 8000 color images containing
persons in a large number of different poses and viewpoints
under mostly favorable illumination conditions.

In [12], the authors replace the SVM layers and the
manually crafted HOG and histogram features by a convo-
lutional neural network for each individual poselet as well
as the overall image. The outputs of the networks are then
combined using a linear classifier for binary attribute pre-
diction. The decomposition into poselets helps to decouple
the influences of pose and viewpoint on appearance from
weaker but relevant signals of certain human attributes, such
as wears glasses. The approach is able to increase the mean
average precision by 13% over the results of [11]. However,
they require large datasets: images of around 25,000 people
are extraced from Facebook, in addition to 8000 color images
from an existing database to avoid overfitting.

Using RGB-D data, the only approach to our knowledge
is due to Wang et al. [5] who recognize multiple attributes
using a similar approach to [11], [12] in that individual SVM
classifiers are trained on body parts instead of the whole
body. Instead of poselets, they use skeleton-based full-body
pose estimates provided by the Kinect sensor to generate
sampling regions around body limbs for the computation of
HOG, LBP, Gabor filter and color+depth histograms. Trained
on a dataset with full-body views of over 4,600 persons
recorded by a sensor mounted above the entrance of an
elevator, they outperform a reimplementation of [11] and
achieve equal precision and recall (EPR) rates of 87% on
gender, 87.4% on short sleeves and 91.6% on long pants.

Unlike these methods, our approach does not require
skeleton estimates – which can be hard to come by under
wider ranges of condition – and fully leverages 3D shape
data that is relatively robust with regard to illumination
conditions. As a result, our method achieves already good
recognition accuracies on 3D points cloud data only. Finally,
due to its simplicity, our approach is extremely efficient
at 125 Hz on a single CPU core (300 Hz on four cores)
without GPU acceleration, which is highly relevant for real-
time implementations on resource-constrained mobile robots.

III. OUR METHOD

In this section, we first describe our tessellation boosting
approach originally developed for people detection in 3D
data [13] and applied to the task of full-body human gender
recognition [1]. We then describe our extensions, the new

geometric extent and color features and two pre-processing
steps.

Our tessellation-based method for 3D object characteri-
zation was, in its original form, first used in [13] for the
task of person detection in 3D range data. The method
takes a bottom-up top-down approach where we classify
object detection hypotheses from a bottom-up classifier using
a learned top-down model. The bottom-up classifier can
either be a simple region-of-interest (ROI) detector or a
more sophisticated detector, typically tuned for higher recall.
Here, we focus on the top-down method and assume to
have a simple ROI detector which extracts candidate person
detections from the scene in the form of RGB-D point clouds,
like the examples shown in Fig. 1.

The top-down method characterizes the point cloud by a
set of features computed on the measurements within axis-
aligned voxels of the 3D object and uses AdaBoost to create
a strong classifier with the best features and voxels. What
distinguishes this method is that the boosted classifier not
only selects the best features and thresholds, but also the best
combination of voxels on which these features have found
to be informative. Thus, the classifier jointly learns the best
scales and locations of features on the 3D object for the
classification task at hand. This allows to robustly and stably
describe complex articulated shapes, as shown in [1] for the
example of gender recognition, where the learned tessellation
outperformed a fixed tessellation by a large margin of 6-10%.

A. Tessellation Generation

We assume persons to fit into a fixed-size bounding
volume B, centered around the median in x and y of the
point cloud. The size of B can either be fixed and taken
from the maximum expected object size or learned from a
training set as in [13].

We subdivide the volume into voxels which leads to
the question of how a volume can be tessellated into a
collection of smaller volumes, a problem well known as
tiling in computational geometry. For the sake of simplicity,
we consider only axis-parallel voxels which reduces the
complexity of the problem but still leaves an infinite number
of tessellations of B. Thus, we define a set of proportion
constraints C to exclude extreme aspect ratios of voxels and
a list of increments s by which voxels will be enlarged. Each
element c = (w, d, h) ∈ C is a width-depth-height triplet
with multipliers of the respective voxel dimension.

The resulting procedure, Algorithm 1, generates all pos-
sible voxel sizes subject to C and s. Defining the remainder
after ceiling-division rem(a, b) as |a − dab eb|, the algo-
rithm tests whether voxels can fill a volume B without
gaps and subdivides B into a regular grid. The function
Tess(B, w, d, h,∆w,∆d,∆h) produces a regular face-to-
face tessellation of B with voxels of size (w, d, h) and offset
(∆w,∆d,∆h) to also allow voxels that overlap each other.
The algorithm generates gapless subdivisions of B that are
complete in that no tessellation is missing under the given
constraints. We also allow slightly protruding voxels with a
tolerance θ.



Algorithm 1: Compute all axis-parallel tessellations T
of a volume B.

Input: Bounding volume B of size wB×dB×hB , set of voxel
proportion constraints C, list of voxel scaling factors s, protrusion
tolerance θ. Output: Set of all possible tessellations T
T ← {}
foreach sj ∈ s do

foreach ck = (wk, dk, hk) ∈ C do
w = sj · wk; d = sj · dk; h = sj · hk
if rem(wB, w)<θ ∧ rem(dB, d)<θ ∧ rem(hB, h)<θ
then
T ← T ∪ Tess(B, w, d, h, 0, 0, 0)
T ← T ∪ Tess(B, w, d, h, w

2
, d
2
, h
2

)
end

end
end
return T

Fig. 2. Left: person candidate point cloud, centered around the median in
x and y. The other pictures show example tessellations of the bounding vol-
ume B generated using our tessellation algorithm. We also allow protruding
voxels, shown in the rightmost picture.

As constraints we use scaling factors s = (0.1, 0.2, ...,
0.8) [m] and proportions C being the set of all permutations
of {{1, 1, 1}, {1, 1, 1.25}, {1, 1, 2}, {1, 1, 2.5}, {1, 1, 3},
{1, 1, 4}, {1, 1, 5}, {1, 1, 6}, {1, 1, 8}, {1, 1, 10}, {2, 2, 3},
{4, 4, 2}, {4, 4, 3}}. These lead to 134 valid tessellations, of
which some examples are shown in Fig. 2.

B. Classifier Training

Let Tj be the jth valid tessellation and V i
j its ith voxel.

Then, for each V i
j of all generated Tj’s, we determine

the set P = {x1, . . . ,xn} of points inside the voxel’s
volume. With the goal to describe shape properties locally,
we then compute a set of RGB-D point cloud features fi
that characterize geometrical and statistical properties of P ,
see Table I. Most of them can be computed very efficiently
from the points’ scatter matrix via eigenvalue decomposition
and none of them require estimation of the surface normals.

Training samples are formed by stacking the features of all
voxel point clouds of all tessellations into one large feature
vector and associating the corresponding ground truth class
label. We train an AdaBoost classifier with nweak decision
stumps as weak learners. After training, the final model
is given by the collection of all voxels in which at least
one feature has been selected. The resulting strong classifier
achieves a double objective, it selects the best features (‘best’
quantified by the AdaBoost voting weights) and selects the
optimal subdivision Topt of B for the classification task at
hand. The method can select an arbitrary number of features
in each voxel – a large number, for instance, means that the

# Description Expression
1 Number of points The point count of P denoted as n. f1 = n

2 Density Captures the normalized point density w.r.t.
the entire point cloud: f2 = n

NB
3 Sphericity Captures the level of sphericity from the ratio

of the eigenvalues λ1, λ2, λ3 extracted from
the scatter matrix of P . f3 = 3 λ3∑

i λi
where

λ1 > λ2 > λ3
4 Flatness Measures the degree of planarity from the

eigenvalues. f4 = 2λ2−λ3∑
i λi

5 Linearity Captures the level of linearity from the eigen-
values. f5 = λ1−λ2∑

i λi

6 Standard
deviation w.r.t.
centroid

Measures the compactness of points in P ,
f6 =

√
1

n−1

∑
i (xi − x̄)2 where x̄ is the

centroid.
7 Kurtosis w.r.t.

centroid
Captures the peakedness of points in P ,
fourth centralized moment of the data distri-
bution in P . f7 =

∑
i (xi − x̄)4/f6.

8 Average
deviation from
median

Alternative measure of compactness. f8 =
1
n

∑
i ‖xi − x̃‖ where x̃ is the vector of

independent medians x̃ = (x̃, ỹ, z̃).
9 Normalized

residual planarity
Alternative measure of flatness. Squared error
sum of a plane fitted into P normalized by n.
f9 =

∑n
i (a xi + b yi + c zi + d)2 where

a, b, c, d are the parameters of the plane
derived from the eigenvalues of the scatter
matrix.

TABLE I
GEOMETRIC FEATURES FROM [1], [13]

# Description Expression
10 Depth Geometric extent of P in x direction.

f10 = max
P

(xi)−min
P

(xi)

11 Width Geometric extent of P in y direction.
f11 = max

P
(yi)−min

P
(yi)

12 Height Geometric extent of P in z direction.
f12 = max

P
(zi)−min

P
(zi)

13
–
15

RGB component-
wise mean

Mean of the red, green, blue components of
each point in P . (f13, f14, f15) = (r̄, ḡ, b̄)

16
–
18

RGB component-
wise standard de-
viation

Standard deviation of the red, green,
blue components of each point in P .
(f16, f17, f18) = (σ(r), σ(g), σ(b))

19
–
21

HSV component-
wise mean

Mean of the hue, saturation, value compo-
nents of each point in P .
(f19, f20, f21) = (h̄, s̄, v̄)

22
–
24

HSV component-
wise standard de-
viation

Standard deviation of the hue, saturation,
value components of each point in P .
(f22, f23, f24) = (σ(h), σ(s), σ(v))

25
–
27

Y′CBCR

component-wise
mean

Mean of the luma, blue-difference, red-
difference components of each point in P .
(f25, f26, f27) = (Ȳ ′, C̄B , C̄R)

28
–
30

Y′CBCR

component-wise
standard
deviation

Standard deviation of the luma, blue-
difference chroma, red-difference chroma
components of each point in P .
(f28, f29, f30) = (σ(Y ′), σ(CB), σ(CR))

TABLE II
NEW GEOMETRIC EXTENT AND COLOR FEATURES

voxel contains a particularly salient local shape – and may
also select a mixture of voxels from different tessellations.
This implicit feature selection is performed separately for
each human attribute, yielding an attribute-specific classifier.



C. Geometric extent and color features

In the current set of geometric point cloud features listed
in Table I, standard deviation w.r.t. centroid and average
deviation from median measure the compactness of the
points in P . However, these are based upon point-to-point
distances and do not capture well the geometric extents
of P , useful e. g. to distinguish vertically and horizontally
elongated shapes that are approximately aligned to the axes.
To achieve this, we extend the feature set by depth, width
and height of P defined in Table II.

All features considered so far are geometric in nature and
do not encode color information – clearly a very informative
object property. We thus extend the feature set by several
scalar RGB features. Concretely, we compute the average
color within the points P of a volume V i

j by computing the
component-wise mean of the red, green and blue channels
as well as their standard deviation. Additionally, since RGB
color values are not invariant with regard to illumination, we
also compute mean and standard deviation in the HSV color
space, were H stands for hue, S for saturation and V for value
(brightness). The expectation here is that the V feature should
be chosen less often by the AdaBoost classifier due to its
dependence on lighting. Finally, we also conduct experiments
in the Y′CBCR color space, where CB and CR represent
the blue-difference and red-difference chroma components,
which are illumination-independent, and Y′ the luma. The
advantage of this color space, used e.g. in JPEG compression
and digital video, is that skin colors are very localized in
the chroma channels and that their values do not vary much
between subjects of different ethnicity, which can be useful
for robustly localizing skin colors (i. e. uncovered body parts)
in the point cloud. As for the other color spaces, we compute
the component-wise mean and standard deviation within a
given set of points P .

The resulting list of new features is shown in Table II.

D. Scaling of input clouds and voxel filter

So far, we have assumed a fixed-size bounding box B
in which voxels are generated. The size of this bounding
volume can be learned from training data or set to some
upper bound. This, however, is problematic when there is a
lot of variation in person size: if the training set includes very
large and very small subjects (e. g. children), the classifier
may fail to locate specific scales on the human body that are
informative for a particular attribute (e. g. hips and waist for
gender, or the head for long hair), or it might at least spend
a significant number of weak classifiers to accommodate
for the differences in size. Learning multiple classifiers for
different person sizes, and then selecting the appropriate
classifier from the point cloud beforehand, requires even
more training data to cover different person sizes across all
the attributes. As a more effective alternative to deal with
this issue, we scale the input person cloud in z direction to a
fixed size. In our case, we stretch the point cloud uniformly
to a height of h = 1.8m, leaving the x and y coordinates
unaltered.

We also discard non-informative voxels in a filtering step,
which reduces both memory consumption and classifier train-
ing times. The feature matrix F contains the stacked features
of all samples over all voxels and tessellations. The entire
matrix, whose size |V i

j | · nfeatures · nsamples scales linearly
with the number of voxels |V i

j |, requires, for instance, with
just the nine geometric features from Table I, 12 GB RAM
on the full dataset. Thus, for each voxel V i

j we count, over
the entire training set, how many times it contains less than
four points and remove those V i

j from the corresponding
Tj for which this applies in at least 30% of the cases.
The threshold comes from the definition of the features
whose computation is undefined or poorly conditioned with
four points. Voxels that are discarded in this way encode a
non-informative location or scale for the characterization of
the object. Examples include small voxels around the head,
which is smaller in diameter than other body regions.

IV. DATASET

For our experiments, we use the SRL Human Attribute
dataset [1] which contains 118 distinct persons (54 male,
64 female) annotated with gender and age in 137 different
recordings. The data has been collected at 15 Hz in three dif-
ferent indoor locations under controlled lighting conditions
using a Kinect v2 sensor. The subjects perform four different
standing and walking patterns designed to cover all relative
orientations and an RGB-D sensor range between 0.5m and
4.5m. In sequence 1, the subject is standing at around 2.5m
distance from the sensor and rotates clockwise in 45◦ steps (1
image per step). Sequence 2 consists of a video of the person
performing a complex walking pattern. In sequence 3, the
person walks on a circle that covers almost the entire view
frustum. Finally, sequence 4 simulates a close-up interaction
with a robot, where the subject steps back, forth and sideways
in front of the sensor as if he/she is physically interacting
with the robot’s touch screen or manipulator. In total, these
sequences contain around 1000 RGB-D frames per person.

For the experiments conducted in this paper, we annotated
the persons with additional binary attributes wears long
trousers, has long hair, has long sleeves, wears jacket. These
attributes are per-person and do not vary across frames. Each
subject has been independently annotated by three persons
and in case of conflicting annotations, we chose the majority
vote. This happened e. g. when a person was wearing 3/4
trousers (which are not clearly long trousers, but also not
shorts) or with medium-length hair. The absolute frequencies
of these attributes across the dataset can be seen in the first
three columns of the table in Fig. 3.

V. EXPERIMENTS AND RESULTS

In our experiments, we compare the baseline method from
our previous work on gender classification [1], which relies
only on the features in Table I, against the new version
extended with geometric extent features, color features and
point cloud scaling. As opposed to [1], to limit training time
we only use 100 instead of 500 weak classifiers. We also
compare against a linear SVM classifier baseline trained on



npos nneg [1] +Extents +Scaling +RGB / HSV / Y′CBCR HOG

gender (m/w) 68 69 89.4% 89.0% 91.7% 90.2% 90.1% 91.3% 85.2%
long trousers 111 26 73.9% 72.6% 73.9% 80.8% 85.0% 85.7% 70.6%
long sleeves 60 77 63.9% 65.2% 63.6% 65.5% 71.6% 73.2% 69.8%
long hair 70 67 85.1% 84.0% 87.7% 86.8% 87.1% 86.2% 83.4%
jacket 20 117 62.8% 63.8% 61.4% 61.8% 57.4% 59.9% 56.5%
random label 68 69 50.7% 47.8% 50.5% 50.5% 51.6% 50.6% 49.7%

Fig. 3. Influence of point cloud scaling (Sec. III-D) and the additional geometric extents and color features in three different color spaces (all in Table II)
on classification accuracy in sequence 1 (static poses). The second and third column show the number of positive and negative class instances per attribute.
The fourth column shows the performance of our baseline method using only the geometric features from Table I. Our approach, using nweak = 100,
outperforms the HOG baseline in both accuracy and runtime performance, where our method is around 15× faster on a single CPU core.

HOG features in RGB-D. While we mainly focus on human
attributes that are reasonably well presented in the dataset,
we believe that in principle our algorithm is applicable to
a broader range of appearance-based human attributes (e. g.
has hat, has backpack).

Our tessellation-based classifier is implemented in C++
and integrated with ROS for visualization. We use the
AdaBoost implementation from the OpenCV library, as well
as the Point Cloud Library (PCL) to load and pre-process
pre-extracted person clouds. Feature computations are par-
allelized using OpenMP. Our code will be released to the
public upon publication of this paper.

For the HOG baseline, we compute HOG feature de-
scriptors using the OpenCV library on both the RGB and
depth image of the person with a window size of 64× 128
pixels, which in previous experiments gave better results than
32×64 px [1]. The resulting feature descriptors in RGB and
depth are concatenated and then fed into a linear SVM.

To maintain a reasonable size of training and test sets
during cross-validation, we perform 10 rounds of repeated
random sub-sampling validation. In each round, we ran-
domly divide the dataset on a per-person basis into two
approximately equally sized training and test sets. We take
measures to ensure that one person instance never appears
in the training and test set simultaneously to prevent the
classifier from learning individual persons’ appearances. We
then average the classification accuracy on the test sets
over all 10 folds. To keep training times within reasonable
limits, we subsample the frames of the larger sequences
2–4 of the dataset by a factor of 5. For class balancing,
we conduct undersampling on a frame-by-frame basis by
discarding excess samples of the majority class, such that
each train and test set eventually contains 50% positive and
50% negative sample frames.

A. Classification accuracy

Static poses only: Results in Fig. 3 compare the different
extensions discussed in Sec. III against the baseline methods
on seq. 1 of the dataset – containing only standing persons
– over different human attributes. In the last row, each
person instance has been assigned a random label, thus the
expectation here is that the classifier should not behave
significantly better than chance (50%). We can see that,

in all cases, our extensions improve classification accuracy.
Y′CBCR features are especially useful for detecting long
sleeves and trousers, which is expected since the absence
of those is indicated by an increase in visible skin color.
As expected, color features are not so helpful for detecting
gender and long hair. It can also be seen that in a number of
cases, the inclusion of further attributes leads to reduced test
performance, e. g. when adding RGB or HSV color features
to the gender or jacket classifier. As we often achieve an
accuracy of 90 to 100% on the corresponding training set, we
are confident that this is a sign of overfitting to the training
data. A significantly larger training set (which, in RGB-D,
is very expensive to acquire) should help to alleviate these
effects.

As the attributes long hair and gender are highly corre-
lated in the groundtruth (ρ=−0.90), we conduct an additional
experiment to analyze if the long hair classifier still performs
well when only the upper body including the head, but
excluding the region below the waist – whose shape can
be an important indicator for gender – is visible. To do
so, we cut all point clouds below a fixed height of 1.2m.
In this case, accuracy only drops from 87.7% to 86.1%.
If we instead only consider the uppermost 0.35m of each
point cloud, which contain the head, we obtain an average
accuracy of 83.5%, which is still a good result, but at the
same time visualizes how individual attribute classifiers can
benefit from additional contextual shape information.

Full dataset: In Fig. 4, we show results when training and
testing a classifier on the full dataset, including walking and
close-up interaction sequences. Our approach outperforms
the baselines in all cases except for the has jacket attribute,
which is the most under-represented attribute in our dataset
and probably suffers from overfitting on the color features.
We also want to note that this is a difficult binary attribute
to detect, as sometimes the subject is wearing a cardigan,
which in its appearance ofteny resembles a jacket but is not
annotated as such. For long trousers and long sleeves, we
improve the accuracy by around 12% compared to the orig-
inal method from [1]. As expected, the overall performance
goes down by 3–5% under less controlled conditions when
persons are walking instead of just standing (seq. 2–3), and
in very close proximity to the sensor (seq. 4).



Gender (1) (1)–(3) (1)–(4) d > 0.8m

HOG 78.0% 76.9% 77.0% 77.4%
[1] 89.8% 83.7% 82.6% 85.1%

Ours 90.4% 87.0% 86.3% 87.7%

Long trousers (1) (1)–(3) (1)–(4) d > 0.8m

HOG 65.0% 60.0% 59.4% 60.7%
[1] 69.4% 66.0% 64.1% 67.0%

Ours 83.6% 78.0% 76.2% 79.9%

Long sleeves (1) (1)–(3) (1)–(4) d > 0.8m

HOG 63.2% 60.8% 60.7% 61.9%
[1] 62.3% 61.8% 61.0% 61.8%

Ours 76.9% 73.8% 72.8% 74.3%

Long hair (1) (1)–(3) (1)–(4) d > 0.8m

HOG 74.3% 72.6% 72.7% 73.3%
[1] 83.7% 77.9% 77.2% 79.3%

Ours 87.2% 83.3% 82.9% 83.9%

Jacket (1) (1)–(3) (1)–(4) d > 0.8m

HOG 56.7% 56.5% 56.8% 57.0%
[1] 62.8% 62.3% 61.5% 62.1%

Ours 60.8% 59.3% 59.0% 59.1%

Fig. 4. Classification accuracies for the full dataset, including static poses
(seq. 1), walking sequences (seq. 2+3) and close-up interaction (seq. 4). 10
runs of repeated random sub-sampling validation with nweak =100, using
extent and YCbCr color features and point cloud scaling. For HOG, we
use a 64x128 window size. The last column excludes all frames where the
person is closer than 80 cm to the sensor, where only a very limited part
of the body is visible and clipping artefacts sometimes appear in the data.

B. Feature selection

At training time, our method computes for all voxels of
all tessellations all features referred to by the respective
column in Fig. 3. For instance, for the second-last column,
the features (1)–(9), (10)–(12), (25)–(30). This leads to a very
high-dimensional feature vector. During testing, however,
only the most informative features in the most informative
voxels of all tessellations are calculated; that selection of
features is implicitly given by the best nweak weak classifiers
chosen by Adaboost.

To find out how often the proposed new features are
selected by our boosting approach overall, we count the
absolute usage frequency of each feature type across all
100 weak classifiers. Fig. 5 shows the 10 most frequently
used features for the long trousers attribute. It can be seen
that the means of the chroma color channels are being used
fairly often, but geometric features such as density, standard
deviation w.r.t. centroid and planarity still play a large role.
Also taking other human attributes into account, we note that
standard deviations in the color channels are being used less
often than the corresponding means, and that the geometric

f26 : CB mean
f27 : CR mean
f30 : CR stddev

f2 : Density
f6 : Std. dev.

f29 : CB stddev
f9 : Planarity

f8 : Median dev.
f25 : Y′ mean
f3 : Sphericity
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Fig. 5. Best 10 geometric and Y′CBCR color features selected by our
approach for the long trousers attribute on the full dataset. Numbers are
absolute frequencies and are relative to the total number of 100 weak
classifiers used during training.

long trousers long trousers no long trousers

no long hair long hair long hair

Fig. 6. Examples of typical failure cases for the long trousers attribute
(top row) and the long hair attribute (bottom row). The caption below each
RGB and depth image shows the predicted, incorrect class label.

extent features (width, depth, height) are used less than 5
times on average across all human attributes.

C. Failure cases

In Fig. 6, we show example RGB and depth images
depicting cases where our approach typically fails. The first
row shows the long trousers attribute; here, we notice that our
classifier sometimes fails to detect very thin trousers, such
as panty hoses, that do not protrude in 3D (first image),
or when the shape of the clothing is not well-defined and
changes dramatically during motion (middle image). Also,
nearly skin-colored trousers (last image) are not detected
as such, which we believe is due to this trousers color not
otherwise appearing in the training set. For the long hair
attribute (second row), the classifier may fail when depth
data is totally missing due to clothing surface properties that
irritate the RGB-D sensor (first image), when the person is
too close to the near clipping plane such that a significant
part of the point cloud is missing (middle image), or when
accessories like hoods or backpacks generate unusual shapes
in the point cloud which are significantly under-represented
in our training set (last image).



D. Computational efficiency

Voxel filtering: Pruning mostly empty voxels from the
set of tessellations before training as described in Sec. III-
D reduces memory consumption significantly from 12 GB
to around 2.4 GB (−80%) on the full dataset using just
the geometric features. Due to the otherwise extremely
high-dimensional feature vectors, this pre-processing step
becomes even more important when additionally including
color features. While testing on seq. 1, no negative impact
on classification accuracy was observed when including this
additional filtering step. Although the pre-filtering incurs
some processing time overhead, this is remedied by the
fact that the feature vectors fed into the AdaBoost learning
algorithm become significantly shorter.

Training time: Using 4 parallel threads for feature com-
putations, training on a single randomized 50% subset of
the full dataset (while using every 5th frame of seq. 2–4)
takes between 0.5 and 2 hours for a single human attribute,
depending on the number of features being used.

Runtime performance: Efficient runtime performance is
important for resource-constrained mobile service robots.
Since a single scene might contain multiple persons, each
with multiple attributes to detect, the processing time per
input person cloud should be low. With nweak = 100 and
using 4 threads, our classifier runs in real-time at around
300 Hz (for a single attribute) on pre-extracted and aligned
RGB-D person point clouds without requiring GPU accel-
eration. Using just a single thread, we still achieve about
125 Hz. If we instead use nweak =500 as in [1], accuracies
improve by around 1-3% while still allowing processing at
120 Hz (4 cores) or 40 Hz (1 core). The new features added
in this paper do not have a significant impact on performance,
as we selectively only compute the best features (found
by AdaBoost) in each selected voxel, and all features are
very simple to compute. Also, adding additional features at
training time does not increase the feature vector size during
testing as long as the number of weak classifiers remains
constant.

VI. CONCLUSION

In this paper, we extended our existing approach on full-
body human gender recognition using a tessellation boosting
approach [1], which so far only used 3D information, with
color features and two new pre-processing steps. These ex-
tensions lead to an improved classification accuracy, shorter
training times and lower memory consumption. Furthermore,
we conduct experiments on four additional, challenging
human attributes and obtain first promising results especially
for the attributes long trousers and long hair. Our method is
very efficient, achieving classification rates per attribute of
up to 300 Hz, which is important for resource-constrained
mobile service robots that are supposed to learn more about
their human environment.

In future work, we want to integrate our classifier with a
real-time RGB-D people detection and tracking framework
on a mobile robot and smooth the predicted class labels
over time to overcome occasional misclassifications due to,

for example, extreme body poses that do not appear in our
training data. We also plan to extract additional training data
from a dataset recorded in a crowded pedestrian environment
in order to improve performance on the existing human
attributes and to learn new ones such as age group or the
presence of backpack or luggage. Finally, we intend to learn
and combine multiple height-specific classifiers in order to
boost classification accuracy e. g. for children.
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