
Inverse Reinforcement Learning Algorithms and Features for Robot
Navigation in Crowds: an experimental comparison

Dizan Vasquez Billy Okal Kai O. Arras

Abstract— For mobile robots which operate in human pop-
ulated environments, modeling social interactions is key to
understand and reproduce people’s behavior. A promising
approach to this end is Inverse Reinforcement Learning (IRL)
as it allows to model the factors that motivate people’s actions
instead of the actions themselves. A crucial design choice
in IRL is the selection of features that encode the agent’s
context. In related work, features are typically chosen ad hoc
without systematic evaluation of the alternatives and their
actual impact on the robot’s task. In this paper, we introduce a
new software framework to systematically investigate the effect
features and learning algorithms used in the literature. We
also present results for the task of socially compliant robot
navigation in crowds, evaluating two different IRL approaches
and several feature sets in large-scale simulations. The results
are benchmarked according to a proposed set of objective and
subjective performance metrics.

I. INTRODUCTION

For robots that share a space with humans, the ability to
perceive, understand, and act in a socially conform way is
a key requirement in many application domains. An area of
increasing research activity along this line is socially compli-
ant or socially aware robot motion planning among humans
[1]. The goal is to acquire, represent and incorporate domain
knowledge about human behavior into the robot’s navigation
system. Unlike classical robot motion planning, dynamic
obstacles are considered as individual rational agents which
maintain social relations and follow rules of social behavior.
There are two major groups of related works: those that apply
models from social psychology and cognitive sciences and
those relying on machine learning techniques.

The incorporation of human sciences models [2]–[7] is a
promising and rigorous approach but whether these models
scale to human-robot relations in uncontrolled conditions is
an open research question. Many of these models, including
the Proxemics theory [8], the social force model [9] or the
back space model [10] used in [3] have been formalized and
calibrated for inter-human relations, often in the controlled
conditions that are typical for the experimental methodology
of human sciences.

Alternatively, learning approaches seek to acquire those
models through statistical learning from observational data
about humans. This paper focuses on one of the most popular

Dizan Vasquez is with the Social Robotics Lab and INRIA Grenoble
(dichodaemon@gmail.com).

Billy Okal and Kai. O. Arras are with the Social Robotics Lab, University
of Freiburg ((okal, arras)@cs.uni-freiburg.de).

This work has been partly supported by the European Commission under
contract number FP7-ICT-600877 (SPENCER).

such approaches on recent years: inverse reinforcement learn-
ing (IRL). For instance, Ziebart [11], used the maximum-
entropy IRL algorithm to learn and predict how people will
move in a static environment. Dynamic environments were
later addressed in [12], where Henry et al. use IRL to have
a simulated agent learn to join the flow of pedestrians using
density and average flow direction features. Another version
of the maximum-entropy algorithm was applied by Kudererer
et al. [13], to learn a behavior model which is used to
predict socially compliant trajectories. More recently, Kim et
al. [14] have applied a Bayesian approach to IRL for social
navigation using depth-augmented optical flow features as
input.

Despite the diversity of features, IRL learning algorithms,
and system parameters found in the literature, there are no
comparative studies –to the best of our knowledge– on the
virtues or drawbacks of the different variants. This paper is a
first step in this direction, in it we systematically investigate
the effect of these choices in large-scale simulations using a
set of representative objective and subjective performance
metrics. Concretely, we analyze the impact of different
features that have been used in the related literature and
compare two popular IRL learning algorithms. Finally, we
compare the results obtained to those obtained by manual
tunning, as well as to a human-based baseline obtained
through teleoperation.

Another major motivation that drives this work is a novel
application of service robots in the aviation industry. In
this scenario, developed by the EU-FP7 project SPENCER
in collaboration with airline KLM as end-user1, we will
deploy an autonomous mobile robot at the Schipol Airport in
Amsterdam to guide delayed transfer passengers from their
gate of arrival to the Schenger barrier and instruct them to
use the priority lane.

The paper is structured as follows: section II intro-
duces Markov Decision Processes and Inverse Reinforcement
Learning. In section III, we discuss the particular choices that
we made for our experiments. The experimental platform is
introduced in section IV and the experiment themselves are
described in section V. Finally, we present our conclusions
and discuss future work in section VI.

II. INVERSE REINFORCEMENT LEARNING

In this section, we briefly describe inverse reinforcement
learning (IRL) focusing on the Markov Decision Process-
based formulation. We also present two existing approaches
to solve this learning problem.

1http://www.spencer.eu

mailto:dichodaemon@gmail.com
mailto:(okal, arras)@cs.uni-freiburg.de
http://www.spencer.eu


A. Markov Decision Processes

Before describing IRL, we need to briefly introduce
Markov Decision Processes, a probabilistic planning tech-
nique which lies at the heart of the learning problem. A finite
Markov Decision Process (MDP) is defined by the following
five elements:

• A finite set of N states S = {s1, · · · , sN}.
• A finite set of K actions A = {a1, · · · , aK}.
• A transition probability function P (St|At−1St−1),

where St, St−1 ∈ S and At−1 ∈ A, describing the
evolution of a previous state St−1 to a new one St when
executing a given action At−1.

• A reward function (conversely, a cost function) R : S×
A → R that depends on a state and an action.

• A discount factor γ ∈ [0, 1) for penalizing future
rewards.

The classical problem in MDPs assumes that all of the
five elements are known and consists of finding an optimal
policy which gives, for every state, the action that should be
selected in order to maximize the expected reward.

B. Inverse Reinforcement Learning

Inverse reinforcement learning [15], deals with the inverse
problem of finding the reward from either an existing policy,
an action-state sequence, or as is the case in this paper, from
a demonstrated, possibly suboptimal, state sequence2D =
{S1, · · · , ST }.

Most MDP-based IRL approaches assume that there is a
set of M features associated with every state, which fully
determine the value of the reward function R. Since finding a
general form solution for R is very difficult, most approaches
assume it to be a linear combination of the features. Thus,
for a given state S, the cost3 can then be expressed as the
dot product Φs ·W of a feature vector ΦS = [ϕ1, · · · , ϕM ]
and a weight vector W = [w1, · · · , wM ]. In this case, the
IRL problem consists on estimating the values of the weight
vector.

Here, we consider two inverse reinforcement learning
algorithms, namely Max-margin IRL [16] and Maximum
Entropy IRL [17]. They are based on a statistic F → RM

which is used to compare the training data with the state
sequences that are obtained when applying the optimal policy
for a given weight estimate Ŵj . This is integrated in an
iterative minimization algorithm which is outlined in Alg. 1

The two IRL methods differ essentially in the chosen
statistic and in the way of computing the weight estimate
Wj . Due to space limitations, we provide only a general
description of these differences, the interested reader may
refer to the original papers:

• Max-margin IRL: uses the feature expectation as statis-
tic. The weight estimation is computed by maximizing
the difference (the margin) between all the previously

2Most approaches, including those considered here, can deal with multiple
demonstration sequences.

3In the context of motion planning, the problem is often formulated in
terms of costs which can be seen as negative rewards.

Algorithm 1 General layout of an iterative IRL algorithm.
1) Set j = 1
2) Propose an initial weight vector estimate Ŵ1

(e.g. random values)
3) Compute the optimal policy πj for the current

weight vector
4) If the statistics for the data and for the optimal policy

are similar enough (e.g. ∥F (D) − F (πj)∥ < ϵ) return
W = Ŵj as the solution

5) Otherwise
a) Set j → j + 1
b) Compute Ŵj using an algorithm-dependent method
c) Jump to step 3

found expected costs and the demonstrated expected
cost. The solution is accepted when this margin goes
below a given threshold.

• Maximum Entropy IRL: the statistic is the feature count
or, for non-binary features, the feature sum. It estimates
weights with a probabilistic approach which computes
path probabilities using an approximate dynamic pro-
gramming procedure inspired by the forward-backward
algorithm for Hidden Markov Models and Conditional
Random Fields.

C. IRL in dynamic environments

These IRL approaches have been developed for environ-
ments where the features do not change over time. This is
obviously not the case in dynamic environments and adapta-
tions need to be done –in particular in the policy computation
step of the learning algorithm. The most obvious strategy
is to re-plan for every time step, updating the features and
the cost function accordingly. Although the solution is not
longer guaranteed to be optimal, it is often considered to be
a good approximation but, unfortunately, this procedure is
computationally expensive. This has motivated us to find a
trade-off in similar way to [12]: by replanning every ten time
steps, we considerably reduce the required resources while
still representing the evolution of the environment in a way
that we consider acceptable.

III. IRL FOR ROBOT NAVIGATION IN CROWDS

This section presents the features and algorithmic choices
that are specific for the task of socially compliant robot
navigation among people in crowds.

A. Features

At time t, the state of the robot is defined by a four-
dimensional vector Sr

t = [xrt , y
r
t , ẋ

r
t , ẏ

r
t ], obtained by con-

catenating its position Xr
t = [xrt , y

r
t ] and velocity V r

t =
[ẋrt , ẏ

r
t ] vectors. The state of a simulated pedestrian is de-

scribed in the same fashion and denoted by a p super-index
Sp
t .
Features are computed from the robot state and pedestrian

information and are used to describe the robot’s context.
In our experiments, we have both used features that have



previously proposed in the literature and also defined new
ones. Something that all features have in common is that,
in order to compute them, only the human agents which are
contained in a neighborhood of radius r around the robot
position are taken into account. All features are described
below in more detail.

a) Density features: The principle of these features [14]
is to encode the Local density in the neighborhood (Fig. 1)
with, in our case, three mutually-exclusive binary features.
Every ϕdn feature represents thus a range. The values used
in our experiments are listed in Table I. As for all the other
ranges in this paper, they have been obtained by and informed
trial and error process.

r

Fig. 1. Density features are computed by counting the number of human
agents n contained in a circle of radius r and centered at the robot’s position.
In this example, the count is 4, corresponding to feature ϕd2 .

TABLE I
DENSITY FEATURE THRESHOLDS

Feature Range

ϕd1
n ∈ (0, 2)

ϕd2
n ∈ [2, 5)

ϕd3
n ∈ [5,∞)

b) Speed+orientation features: These features [14] rep-
resent the relative speed and orientation of the pedestrians
with respect to the robot assuming that they can be consid-
ered independently. This results in three magnitude features:
ϕs1:3 and three orientation features: ϕo1:3 . The thresholds are
the same than for the velocity features described below.

c) Velocity features: Figure 2 illustrates the relative
motion of the simulated pedestrians in the neighborhood
with respect to the robot. The idea, inspired on [12], is to
compute the average magnitude of robots moving in three
different ways: (o1) towards the robot, (o2) perpendicular or
(o3) away from the robot. First, every agent is classified in
the corresponding orientation bin according to the minimum
angle between its relative position Xp

t − Xr
t and velocity

V p
t − V r

t . Then, for each bin, the average speed of the
associated agents is computed and discretized in one of
three levels (s1, s2, s3). It is important to notice that features
belonging to different orientation bins are not mutually
exclusive. The orientation and magnitude thresholds used in
our experiments are listed in Table II.

d) Default cost feature: This feature, denoted by ϕdef ,
is always set to one. It has been proposed by [12] to allow
IRL to learn how people balance the other features against
the travelled distance. A similar idea has been previously
proposed in [18] for a car parking application.

v
t
r

v
t
o

x
t
r

x
t
o

(a) Situation overview

xot-x
r

vot-v
r
t

α

s3
o2

s2
s1

o2 o3

o1

l

(b) Feature computation

Fig. 2. Relative orientation bins (o1, o2, o3) are computed by estimating
the minimum angle α between the relative position and velocity vectors.
Magnitude is then computed per bin as the mean of the corresponding
individual relative velocity magnitudes l. For the human agents in this
example, feature ϕo1,s1 will be turned on.

TABLE II
VELOCITY FEATURE THRESHOLDS

Feature Range

ϕo1,··· α ∈ (− 3π
4 , 3π

4 ]
ϕo2,··· α ∈ [π4 , 3π

4 ) ∪ [− 3π
4 ,−π

4 )
ϕo3,··· α ∈ [−π

4 , π
4 )

ϕ··· ,s1 l ∈ [0, 0.015)
ϕ··· ,s2 l ∈ [0.015, 0.025)
ϕ··· ,s3 l ∈ [0.025,∞)

e) Social force features: These features are inspired on
the social forces model proposed by Helbing [9], is used to
compute the repulsive force between agents i and j according
to the following equation:

f soc
ij = ae(

rij−dij
b )Nij

(
λ+ 0.5(1− λ)(1 + cos(φij))

)
(1)

where a and b are tuning constants, rij is the sum of the
radius of both agents, dij is their respective distance, Nij

is their normalized relative position and φij is the relative
orientation of the motion of agent i with respect to the vector
that goes from agent i to agent j. Finally, λ is an important
parameter which allows to define an anisotropic influence
region that represents the fact that the obstacles in front of
an agent are usually more relevant that those located behind
it (see also Fig.4).

The force is used to compute features, denotes by ϕsf1:3 ,
which are discretized in bins according to φij . These fea-
tures, however, are not binary. Instead, for every agent in
the neighborhood, the corresponding relative orientation bin
is computed from φij which is then incremented by one
if the force exceeds a predetermined threshold τ . In our
experiments, we have fixed parameters as follows: a = b =
1, λ = 2.0 and τ = 0.5. Relative orientation bins are
discretized according to Table III.

TABLE III
SOCIAL FORCE FEATURES

Feature Range

ϕsf1
φij ∈ (− 3π

4 , 3π
4 ]

ϕsf2
φij ∈ [π4 , 3π

4 ) ∪ [− 3π
4 ,−π

4 )
ϕsf3

φij ∈ [−π
4 , π

4 )



f) Social+Relative Velocity forces: These last features
extend the social force ones by proposing an additional force
which takes into account the motion directions of both agents
as follows:

f vel
ij = (1 + cos(ψij)) e

(rij−dij) ∥Vi − Vj∥ (2)

where ψij is the relative orientation, computed in the same
way as for the velocity features described above, and Vi, Vj
are the agent’s velocities.

Instead of discretizing them, the results of equations 1
and 2 are summed up for all agents and stored in the
respective continuous features φf1 and φf2 .

B. Motion Planning

For motion execution, we recompute a plan every time
step using a grid-based GPU implementation of Dijkstra’s
algorithm. We have discretized the state space in a three-
dimensional grid in which each cell’s side measures 1.0 m.
The third dimension is used to represent the robot’s ori-
entation, discretized in eight values. Also, in order to take
into account dynamic constraints, the robot is only allowed,
when moving, to either keep its heading angle or to in-
crease/decrease it by π/4 rad.

IV. EXPERIMENTAL PLATFORM

One of this paper’s contributions is the software platform
we used for all our experiments. Although it is still on pre-
alpha stage, we intend to release it publicly, together with
the final version of this paper. The platform is implemented
as a number of learning algorithms, together with three ROS
modules, which will facilitate the transition to experiments
with our real robot. The software is open source and is being
continuously improved, it is available at:
https://github.com/srl-freiburg.

• Learning algorithms: this includes GPU based imple-
mentations of the two algorithms presented here.

• ROS Pedestrian simulator: an improved ROS wrapper
for the PedSim microscopic pedestrian crowd simula-
tor [19].

• ROS planning and control module: GPU based im-
plementations of the Dijkstra and Forward-Backward
algorithms using gradient interpolation for control.

• ROS Teleoperation module: allows a human to operate
the simulated robot via keyboard.

V. EXPERIMENTS

The main objective of our experiments was to evaluate the
implemented IRL algorithms (c.f. Sec. II-B) and features.
In order to do so, we have defined three scenarios (c.f.
Sec. V-A), and four sets of features chosen from Sec. III-
A according to selected papers on the literature.

For every scenario, we have performed a set of teleoper-
ated sequences which have been used for training, computing
weight vectors for all the combinations of feature sets and
IRL algorithms. For every such combination, we have also
obtained –by trial and error– a manually tuned set of weights
to be used as a baseline.

Additional teleoperated sequences have been used for
evaluation, using a number of proposed objective and sub-
jective metrics (c.f. Sec. V-C). The results are presented and
analyzed in Sec. V-D.

A. Scenarios

In order to evaluate the capacity of the various features to
represent different situations, we have defined three simula-
tion scenarios (Fig. 3). Each such scenario presents particular
challenges, for instance, in the airport gate scenario, the robot
should join the left-right moving people “lane” in the bottom
and then go up at the end, probably overshooting a little bit
to avoid being “carried out” by the crowd. In the crossing
hallway scenario, the main difficulty is to go through the
central part, in which people is moving in all directions.
Finally, in the intersection scenario, we would expect the
robot to follow the natural “lanes” in similar fashion to a
vehicle.

...
(a) Airport gate

...
(b) Crossing hallway

...
(c) Intersection

Fig. 3. Experimental scenarios (red circles = start, green circles = goal).

B. Feature sets

In order to study their respective performance to repro-
duce human-like behavior, we have organized the features
presented in Sec. III into four feature sets (Table IV). In
three cases, the selection corresponds to existing papers in
the literature, as indicated in the table.

An interesting insight concerning the features sets was
the need for the default feature ϕdef in all cases. Without
it, planning algorithms tended to behave erratically, and
produced infinite paths in cases where all features were set
to zero.

https://github.com/srl-freiburg


TABLE IV
EVALUATED FEATURE SETS

Name Features Based on

F1 ϕd1:3 , ϕo1:3,s1:2 , ϕdef [12]
F2 ϕd1:3 , ϕs1:3 , ϕo1:3 , ϕdef [14]
F3 ϕsf1 , ϕsf2 , ϕsf3 , ϕdef [9]
F4 ϕf1 , ϕf2 , ϕdef —

C. Evaluation metrics

In order to compare the different algorithms and feature
sets, we have defined two kinds of evaluation metrics:

1) Objective metrics: These task-oriented metrics quantify
the efficiency of the robot while performing the given
task. In our case, these metrics are:
• Path length: distance traveled from the start to the

goal location.
• Path smoothness: smoothness of a trajectory. Com-

puted as the sum of heading changes in subsequent
steps along the path.

2) Subjective metrics: These metrics aim to reflect more
intangible human factors, such as comfort. In human
sciences, these are often obtained from questionnaires
given to experimental subjects. Since we are using
a simulator, we have resorted to numeric metrics to
approximate them in similar fashion to [1]. For our
experiments, we have defied two kinds of metrics:
• Proxemic intrusions: number of intrusions into the

intimate, personal, social and public space as defined
by the Proxemics model [8] (see also Fig. 4).

• Anisotropic intrusions: number of frontal, lateral and
back intrusions into an area defined by the anisotropic
influence model by Helbing et al. [20] (see also
Fig. 4).

Finally, we have computed, for every feature set, three
metric vectors –two for the learning algorithms and one for
the manually tuned weights– containing the concatenation
of the average objective and subjective values obtained from
five runs of the respective learned weights. We have also
computed, in every case, a an analogous reference metric
vector R from the teleoperated paths, which is used to

−1 0 1

−1

0

1

−1 0 1

−1

0

1

Fig. 4. Simulated human comfort measures. Left: we count intrusions of the
robot into the intimate, personal, social and public space as defined by the
Proxemics model (only the intimate, personal and part of the social spaces
are shown). Right: we count intrusions of the robot into an anisotropic sphere
based on the model of [20]. We quantize the robot’s angle of approach and
count the intrusions into the four directions head-on, sideways and alongside.

compute a normalized score, where lower values indicate
more human-like behavior. For example, let MF1,MM be
the metric vector obtained from feature set F1 using the max
margin algorithm, the normalized score SF1,MM is computed
as:

SF1,MM = 100 ∗ ∥R−MF1,M∥/∥R∥ (3)

D. Results

Figure 6 (left) shows the average normalized scores ob-
tained for all scenarios using the weights learned from
teleoperated data gathered in the same scenario. In order to
study how the learned weights generalize to different scenes,
Fig. 6 (right) shows the scores obtained from applying the
weights learned from scene one and applied to scene three.
From the figure, it can be concluded that, in our experiments:

• Both learning algorithms have similar performance and
there is no clear winner among them.

• When using weights learned on the same scenario,
learned weights are either comparable or much better
than manually tuned ones.

• Feature set F4 is clearly the one that performs worse,
while F1 and F2 are comparable, with a slight advan-
tage for F2.

• Feature set F3 has the best performance on same scene
weights, but seems to be the one that generalizes worst
to other scenarios.

As an additional qualitative comparison of individual
features, instead of feature sets, we ran additional tests
using only one feature at a time and visually comparing the
resulting paths against the teleoperated ones. Fig. 5 illustrates
a typical result, with velocity features consistently producing
the most similar paths, although considerably less smooth.
Further studying the smoothness metric, we found out that,
in all cases, teleoperation produced considerably smoother
paths than using any of the learned weights and features.
We attribute this to the lack of true motion prediction in
all the approaches, which is something that people, on the
other hand, naturally do when teleoperating the robot. An
additional factor is the relative coarseness in the domain of
the obtained cost functions (e.g. Fig. 7) which, even for our
largest feature set are limited to 1024 cost values.

Fig. 5. Paths obtained in scenario one (airport) when only one of the
features defined in Sec. III-A is active.



FS1 FS2 FS3 FS4
30

35

40

45

50

55

60

65

70

75

Similarity scores (same learning and test scenes)

MaxEnt MaxMargin Manual 

Feature Set

N
o

rm
a

liz
ed

S
co

re
s

FS1 FS2 FS3 FS4
30

35

40

45

50

55

60

65

70

75

Similarity scores (different learning and test scenes)

MaxEnt MaxMargin Manual 

Feature Set

N
o

rm
a

liz
ed

S
co

re
s

Fig. 6. Normalized scores per feature and learning algorithms (smaller is better). Left: same scenario. Right: different scenario.

VI. CONCLUSIONS

To the best of our knowledge, this paper presents the
first experimental comparison of IRL based learning methods
and feature sets for socially compliant robot navigation in
crowds. It proposes two main contributions:

• An experimental open software platform to evaluate
diverse IRL algorithms and feature sets for service
robotics applications.

• A set of evaluation metrics and methodologies which
constitute a first effort toward building a full benchmark
for these techniques.

This work has also provided three important insights con-
cerning the current state of the literature: a) the importance
of the default cost feature; b) the need of motion prediction
to obtain smoother human-like motion; and c) for this kind
of cost function (i.e. linear combination of weights) it seems
to be better to put the effort on feature design than on the
learning algorithms. Conversely, in order to simplify the task
of designing features, richer, more complex cost functions
and learning algorithms are required.

Concerning our future work, we are interested in incorpo-
rating other algorithms (e.g. Bayesian IRL) and integrating
feature prediction algorithms into the planning loop. We also
explore the use of planning as a way of predicting other
people’s motion as in [11]. We also intend to extend our
studies to the literature of Inverse Optimal Control (e.g. [21]).

Fig. 7. Example costmap for scenario one, notice the relative lack of
smoothness in the cost values, illustrated by the colors.

REFERENCES

[1] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot
navigation: A survey,” Robotics and Autonomous Systems, June 2013.

[2] E. Pacchierotti, H. I. Christensen, and P. Jensfelt, “Embodied social
interaction for service robots in hallway environments,” in Proc. of the
Int. Conf. on Field and Service Robotics (FSR), 2005.

[3] L. Scandolo and T. Fraichard, “An anthropomorphic navigation scheme
for dynamic scenarios,” in Int. Conf. on Robotics and Automation
(ICRA), Shanghai, Chine, February 2011.

[4] J. Rios-Martinez, C. Laugier, and A. Spalanzani, “Understanding
human interaction for probabilistic autonomous navigation using risk-
RRT approach,” in Int. Conf. on Intelligent Robots and Systems (IROS),
San Francisco, USA, 2011.

[5] J. Mainprice, E. Sisbot, T. Simeon, and R. Alami, “Planning safe
and legible hand-over motions for human-robot interaction,” in IARP
Workshop on Techical Challenges for Dependable Robots in Human
Environments, Shanghai, China, 2010.

[6] Y. Nakauchi and R. Simmons, “A social robot that stands in line,”
Autonomous Robots, vol. 12, no. 3, pp. 313–324, May 2002.

[7] Y. Tamura, T. Fukuzawa, and H. Asama, “Smooth collision avoidance
in human-robot coexisting environments,” in Int. Conf. on Intelligent
Robots and Systems (IROS), Taipei, Taiwan, 2010.

[8] E. Hall, Handbook of Proxemics Research. Society for the Anthro-
pology of Visual Communications, 1974.

[9] D. Helbing and P. Molnar, “A social force model for pedestrian
dynamics,” Phys. Rev. E, vol. 51, pp. 4284–4286, 1995.

[10] R. Middlemist, E. Knowles, and C. Matter, “Personal space invasions
in the lavatory: suggestive evidence for arousal,” Journal of Personality
and Social Psychology, vol. 33, no. 5, pp. 541–6, 1976.

[11] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A.
Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa, “Planning-based
prediction for pedestrians,” in Proc. of the Int. Conf. on INtelligent
Robots and Systems (IROS), 2009.

[12] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in Int. Conf. on Robotics and Au-
tomation (ICRA), Anchorage, USA, 2010.

[13] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-
based prediction of trajectories for socially compliant navigation,” in
Proc. of Robotics: Science and Systems (RSS), 2012.

[14] B. Kim and J. Pineau, “Human-like navigation: Socially adaptive path
planning in dynamic environments,” in RSS 2013 Workshop on Inverse
Optimal Control and Robotic Learning from Demonstration, Berlin,
Germany, 2013.

[15] S. Russell, “Learning agents for uncertain environments,” in Proc. of
the 11th Annual Conf. on Computational Learning Theory, 1998.

[16] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proc. of the 21st Int. Conf. on Machine Learning,
Banff (CA), 2004.

[17] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. Dey, “Maximum entropy
inverse reinforcement learning,” in AAAI Conference on Artificial
Intelligence (AAAI’08), July 2008.

[18] P. Abbeel, D. Dolgov, A. Y. Ng, and S. Thrun, “Apprenticeship learn-
ing for motion planning with application to parking lot navigation,”
in Proc. of the Int. Conf. on Intelligent Robots and Systems (IROS),
2008.

[19] C. Gloor, “PedSim: A Microscopic Pedestrian Crowd Simulation Sys-
tem,” http://pedsim.silmaril.org, 2012, [Online; accessed Sept-2013].

[20] D. Helbing, I. J. Farkás, P. Molnár, and T. Vicsek, “Simulation of
pedestrian crowds in normal and evacuation situations,” in Pedestrian
and Evacuation Dynamics, M. Schreckenberg and S. D. Sharma, Eds.
Springer, Berlin, Germany, 2002.

[21] S. Levine, Z. Popovic, and V. Koltun, “Feature construction for
inverse reinforcement learning,” in Advances in Neural Information
Processing Systems 23, 2010, pp. 1342–1350.

http://pedsim.silmaril.org

	Introduction
	Inverse reinforcement learning
	Markov Decision Processes
	Inverse Reinforcement Learning
	IRL in dynamic environments

	IRL for Robot Navigation in Crowds
	Features
	Motion Planning

	Experimental platform
	Experiments
	Scenarios
	Feature sets
	Evaluation metrics
	Results

	Conclusions
	References

