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Abstract. We present an active learning framework for image segmen-
tation with user interaction. Our system uses a sparse Gaussian Process
classifier (GPC) trained on manually labeled image pixels (user scrib-
bles) and refined in every active learning round. As a special feature, our
method uses a very efficient online update rule to compute the class pre-
dictions in every round. The final segmentation of the image is computed
via convex optimization. Results on a standard benchmark data set show
that our algorithm is better than a recent state-of-the-art method. We
also show that the queries made by the algorithm are more informative
compared to randomly increasing the training data, and that our online
version is much faster than the standard offline GPC inference.

1 Introduction

Automatic image segmentation is one of the most important problems in com-
puter vision. Its attractiveness stems from its very large range of applications,
including medical imaging and robotics. However, in general the image segmen-
tation problem is ill-posed, because a correct segmentation depends strongly on
the application. Therefore, we focus on the interactive segmentation problem,
where the user provides information about the regions to be segmented, e.g. by
manually sampling image pixels and assigning them to a predefined region class.
These user scribbles are used as ground truth information, and the aim is to
infer a good segmentation using these scribbles as constraints on the labelling.
To do this, many approaches have been presented in the literature with impres-
sive results. However, current methods can reach high classification rates only
by requiring comparably many user scribbles, and the number of user scribbles
needed usually grows very fast as the segmentation quality approaches 100%.

In this paper, we present a method that asks for user input more intelligently
by actively querying pixels to be labeled where the classification was made with
high uncertainty. This way, only a few user scribbles are needed to obtain a high
quality segmentation. Our method uses an efficient sparse Gaussian Process clas-
sifier (GPC) to learn background and foreground models, providing an accurate
estimation of the classification uncertainty. We also present a very efficient way
to compute the class predictions on every round using an online update rule.
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Fig. 1: Comparison between the Parzen window estimator [8] and our sparse GP clas-
sifier for foreground classification. From the initial scribble image (a) both approaches
learn a model for the foreground. As none of the scribble pixels for the foreground
class is white, both approaches fail to classify the white neck of the cat correctly (b, e).
However, in the next active learning round, the GP manages to query this part from
the user based on its accurate estimation of the predictive uncertainty (c). In contrast,
the Parzen window estimator does not query this part, because its uncertainty is low
despite its incorrect classification, i.e. it is over-confident (f). After 6 rounds the GP
achieves a very good segmentation (d), while the Parzen window estimator still gives
a lower-quality segmentation (g).

1.1 Related Work

Many previous works use energy minimization for image segmentation, and since
the work of Boykov et al. [1], intensive research, e.g. [13, 7], has been done on
embedding the input image onto a discrete lattice and computing a segmentation
using the min-cut framework. Another line of work [16, 8] models segmentation
in the continuous domain and is based on the convex relaxation technique of
Nikolova et al. [9]. Both discrete and continuous approaches impose spatial con-
sistency as a prior on the image labelling. Our work is related to [8] where the
data term describing the pixel class probabilities includes spatial information
while estimating the colour distribution using a Parzen window estimator. How-
ever, we use an Informative Vector Machine (IVM) [5], a sparse version of the
Gaussian Process Classifier, and employ active learning, which improves the seg-
mentation result quickly after only a few training rounds (see Fig. 1). In contrast
to the sparse GP algorithm of Csató and Opper [2], the IVM has advantages in
the context of active learning, mainly due to the information-theoretic criterion
used to select the subset of the training points.

In the field of active learning, Kapoor et al.[4] address object categorization
using a GP classifier (GPC) where data points possessing large uncertainty (using
posterior mean and variance) are queried for labels and used to improve classifi-
cation. Triebel et al. [15] use an IVM to actively learn traffic lights in urban traffic
images. Here, we use a similar approach, but with a very efficient online update
method for the classification step of the GPC. Vezhnevets et al. [17], as well as
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Fig. 2: Example sequence of our proposed active learning framework. The algorithm
starts with initial user scribbles as shown in (a). It then learns a sparse GP classifier
and segments the image using the GP prediction and a regularization term (b). Then,
candidate regions for new, informative user scribbles are computed (c). These are based
on the normalized entropy of the GP prediction, i.e. bright regions represent a higher
classification uncertainty than darker regions. In this case, a segment at the upper
right border is chosen. A label is queried for these pixels (here it is background), and
a sub-set of uniformly sampeled pixels together with the class labels is added to the
training data (d). In the next round, the classification is improved and the result is
refined (e). After a few rounds (here 4 in total), the final segmentation is obtained (f).

Wang et al. [18] also use active learning for interactive image segmentation, but
either with a CRF+NaiveBayes [17] or a Gaussian Mixture Model (GMM) [18]
as an underlying classifier. We use a GPC, because it is non-parametric, i.e. it
does not assume a functional model for the data, and it was shown to provide
very accurate uncertainty estimates, which is crucial in active learning.

2 Algorithm Overview

Fig. 2 shows an example sequence of our active learning framework for interactive
image segmentation. From a set of initial user scribbles from both foreground
and background regions (Fig 2a), our algorithm learns a sparse Gaussian Process
Classifier (GPC) and classifies the remaining pixels. Then, a segmentation is ob-
tained using regularization (Fig. 2b), and an uncertainty measure is computed
from the predictive variance returned by the GPC. We use a GPC, because its
uncertainty estimates are more reliable than those produced by other learning
methods such as Support Vector Machines, where reliable refers to a strong
correlation between uncertain and incorrectly classified samples (see, e.g., [10]).
Then, we perform an over-segmentation of the original image based on super-
pixels [3] and compute the average classification uncertainty (entropy) for each
segment (see Fig. 2c). In the next step, the algorithm selects the segment with
the highest uncertainty to query a ground truth label from the user, samples
pixels uniformly from the segment, and adds the samples with the obtained la-
bels to the training data set (see Fig. 2d). Note that, due to imperfections in the
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segmentation, some segments can contain both foreground and background pix-
els. In that case, the user can select a “don’t know” option, and the next segment
is chosen in the order of decreasing entropies. This however, occurs only rarely
when the segmentation is done sufficiently fine-grained. The whole learning and
classification process is then repeated for a fixed number of times or until an
appropriate stopping criterion is met (Fig. 2e and 2f).

3 Gaussian Process Classification

Every round of our active learning algorithm starts by training a Gaussian
Process Classifier (GPC) on the current set of user scribbles. If we denote
the scribbles as pairs (x1, y1), . . . , (xN , yN ), where xi are feature vectors1 and
yi ∈ {−1, 1} are binary labels denoting background or foreground, then the task
is to compute a predictive distribution p(y∗ = 1 | X ,y,x∗). Here, (x∗, y∗) is
an unseen pixel/label pair, X the set of all training pixels, and y the training
labels. To compute the predictive distribution, the GPC first estimates a dis-
tribution p(f | X ,y) over the latent variables f ∈ IRN , approximating it with
a multivariate normal distribution with mean µ and covariance matrix Σ, i.e.:
p(f | X ,y) ≈ N (f | µ, Σ). This is done using Bayes’ rule:

p(f | X ,y) = p(y | f)p(f | X )∫
p(y | f)p(f | X )df

, (3.1)

where p(f | X ) = N (f | 0,K) is the prior of the latent variables, and

p(y | f) =
∏
i

p(yi | fi) (3.2)

are the likelihoods, which are conditionally independent. These likelihoods are
determined using a sigmoid function Φ, i.e. p(yi | fi) = Φ(yifi), which has
the effect that Eq. (3.1) cannot be computed in closed form. Here, Expectation
Propagation (EP) and Assumed Density Filtering (ADF) are commonly used
approximations based on a Gaussian q(yi | fi) that minimises the Kullback-
Leibler (KL) divergence between q(y | f)p(f | X ) and the numerator of Eq. (3.1).

Then, for a given new test data point x∗, the GP classifier computes the
mean µ∗ and the variance σ2

∗ of the latent variable distribution

p(f∗ | X ,y,x∗) =
∫
p(f∗ | X ,x∗, f)p(f | X ,y)df (3.3)

and uses that to compute the predictive distribution

p(y∗ = 1 | X ,y,x∗) =
∫
Φ(f∗)p(f∗ | X ,y,x∗)df∗. (3.4)

1 These can be either RGB pixel values or a combination of image coordinates and
RGB values of the pixels. In our implementation, we use the latter, because it also
provides locality information about background and foreground.
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If Φ is the cumulative Gaussian function this can be done in closed form using

p(y∗ = 1 | X ,y,x∗) = Φ

(
µ∗√
1 + σ2

∗

)
. (3.5)

3.1 Information-theoretic Sparsification

One problem with the GPC is its huge demand of memory and run time, because
it maintains an N×N covariance matrix, and the number of training samples N
can be very large. Therefore, we use a sparsification known as the Informative
Vector Machine (IVM) [6]. The main idea here is to only use a sub-set of training
points denoted the active set ID, from which an approximation q of the posterior
is computed. As above, q is Gaussian, i.e. q(f | X ,y) = N (f | µ, Σ). The IVM
computes µ and Σ incrementally, i.e. in step j a new µj and Σj are computed:

µj = µj−1 +Σj−1gj (3.6)
Σj = Σj−1 −Σj−1(gjgTj − 2Γj)Σj−1 (3.7)

where
gj =

∂ logZj
∂µj−1

, Γj =
∂ logZj
∂Σj−1

, (3.8)

and Zj is the approximation to the normalizer in Eq. (3.1) using the estimate qj .
Initially, µ0 = 0, and Σ0 = K, whereK is the prior GP covariance matrix. Then,
at iteration j the training point (xk, yk) that maximizes the entropy difference
between qj−1 and qj is selected into the active set. The algorithm stops when
the active set has reached a desired size D. In our implementation, we choose D
as a fixed fraction of N .

Due to a circular dependence between ID and the kernel hyper parameters θ,
the IVM training algorithm loops a given number of times over two steps: esti-
mation of ID from θ and minimizing the marginal likelihood ZD using ∂ZD/∂θ,
thereby keeping ID fixed. Although there are no convergence guarantees, in
practice a few iterations are sufficient to find good kernel hyper-parameters.

4 Online Update of the IVM

In addition to its sparsity, the IVM differs from the standard GP also by its
ability to compute the posterior distribution p(f | X ,y) incrementally. Thus, the
algorithm loops over all active points and updates mean vector µ and covariance
matrix Σ by increasing their lengths in every iteration. In particular, it keeps the
lower triangular matrix Ld of a Cholesky decompositon in memory and updates it
using rank-1 Cholesky updates, where Ld is of size d×d and d = 1, . . . , D. Further
details of this procedure are given in Algorithm 1 of Lawrence et al.[6]. For our
purpose, this incremental scheme is particularly useful, because it avoids the
complete re-computation of the GP parameters in every training round and adds
only a fixed number of rows and columns to Ld. This decreases the training time
substantially, as we show below. For an efficient class prediction, we furthermore
propose a novel online update rule, as described next.
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4.1 Online Computation of the Class Prediction

To predict a class label y∗ for a new test data point x∗, the IVM computes the
mean µ∗ and the covariance σ∗ of the approximation to the predictive distribu-
tion given in Eq. (3.3), and uses them to obtain the class probability (Eq. (3.5)).
With the notation of Rasmussen and Williams [12], this can be expressed as

µ∗ = kT∗ (K + Σ̃)−1µ̃ (4.1)
σ∗ = k(x∗,x∗)− kT∗ (K + Σ̃)−1k∗, (4.2)

where µ̃ and Σ̃ are the site parameters of the approximate Gaussian likelihood
q(y | f), K is the prior covariance matrix, i.e. the kernel function k applied to
all pairs of training points x1, . . . ,xN , and k∗ = (k(x∗,x1), . . . , k(x∗,xN )). Note
that k∗, µ̃, and B := K+ Σ̃ are only computed for D active points with D < N .

In general, Eqs. (4.1) and (4.2) have to be computed completely anew for
every new test point x∗, and it is usually unlikely to observe the same test point
again. In active learning, this means that the complexity of making predictions
increases quadratically with the training rounds, because in every training round
the matrix B is larger due to the additional active points in the training data.
However, for interactive image segmentation, we can use the fact that class
predictions are made on the same pixels (i.e. test points) in every round. This
means that k∗,t from round t can be obtained from k∗,t−1 of the previous round
by appending the covariances k(x∗,xDt−1+1), . . . , k(x∗,xDt

) between x∗ and the
new active points, where Dt is the total number of active points in round t. This
can be used to compute µ∗,t and σ∗,t incrementally from µ∗,t−1 and σ∗,t−1. To
do this, we note that Bt is given by its Cholesky decomposition LtLTt , and

Lt :=

(
Lt−1 0
A L+

)
, (4.3)

where L+ is lower-triangular. To compute B−1t , we use

B−1t =

(
Lt−1L

T
t−1 Lt−1A

T

ALTt−1 AAT + L+L
T
+

)−1
, (4.4)

and compute the Schur complement as

S = AAT + L+L
T
+ −ALTt−1(Lt−1LTt−1)−1Lt−1AT = L+L

T
+.

With this, we obtain

B−1t =

(
C −L−Tt−1ATS−1

−S−1AL−1t−1 S−1

)
, (4.5)

where C = (Lt−1L
T
t−1)

−1 + L−Tt−1A
TS−1AL−1t−1. We now formulate Eq. (4.2) as:

σ∗ = k(x∗,x∗)−
(
k∗,t−1 k∗,+

)
B−1t

(
k∗,t−1
k∗,+

)
, (4.6)
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where k∗,+ is the vector of newly added covariances in round t. Plugging Eq. (4.5)
into Eq. (4.6) we obtain for the rightmost term r of Eq (4.6):

r = k̂Tt−1k̂t−1 + k̂Tt−1A
TS−1Ak̂t−1 − 2k̂Tt−1A

TS−1k∗,+ + kT∗,+S
−1k∗,+ (4.7)

where k̂t−1 = L−1t−1k∗,t−1. It follows that the first term of r in Eq. (4.7) and the
first term in Eq. (4.6) define the predictive variance of the previous round σ∗,t−1

σ∗,t−1 = k(x∗,x∗)− k̂Tt−1k̂t−1, (4.8)

whereas the remaining terms of r can be subsumed into

(L−1+ k∗,+ − L−1+ Ak̂t−1)
T (L−1+ k∗,+ − L−1+ Ak̂t−1), (4.9)

which simplifies into
(L−1+ ∆k)T (L−1+ ∆k) (4.10)

where ∆k = k∗,+ − Ak̂t−1. This results in an efficient way to compute σ∗,t:
We store k̂t−1 from the previous round and compute ∆k and L−1+ ∆k. Then we
multiply the result with itself (Eq. (4.10)) and substract it from σ∗,t−1. Similarly,
we can compute µ∗,t from µ∗,t−1 of the previous round using the difference vector
∆µ := µ∗,+ −Aµ̂t−1, where µ̂t−1 = L−1t−1µ̃t−1. To summarize, we have

µ∗,t = µ∗,t−1 + (L−1+ ∆µ)T (L−1+ ∆k) (4.11)

σ∗,t = σ∗,t−1 − (L−1+ ∆k)T (L−1+ ∆k). (4.12)

4.2 The Kernel Hyper-Parameters

As mentioned before, finding optimal hyper parameters for the kernel function
involves several iterations over active set determination and gradient-descent on
the marginal likelihood. However, doing this in every training round has several
disadvantages: first, it requires a large computational effort, and second it makes
the formulation of the online computation developed in the previous section in-
valid. The reason for the latter is that the online formulation relies on the fact
that the active set does not change across the learning rounds, because other-
wise k∗ would have to be recomputed completely in every round. Fortunately, it
turns out that the kernel hyper parameters do not change significantly across the
training rounds, and, even when they do change, they only have a minor impact
on the classification results of the GPC. This is another strength of the GPC
framework, because essentially it represents a non-parametric model. In our im-
plementation, we obtain the kernel hyper-parameters using cross-validation on a
hold-out set. Compared to the usual gradient-descent based maximization of the
log marginal, this has the advantage that the kernel parameters are optimized
across a number of images, and not for each individual image. Especially, as we
use locality and color features in combination with an Automatic Relevance De-
termination (ARD) kernel, the obtained length scales represent a general weight-
ing between position and color. This turned out to achieve much better results
than a per-image training of the ARD kernel parameters.
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5 Segmentation

The class predictions from the IVM are only local estimates, and they disre-
gard global properties of the image I. Therefore, we formulate the segmentation
problem on the image domain Ω ⊂ IR2 as finding a foreground region Ω̂F so that

Ω̂F =argmin
ΩF

λ

∫
ΩF

− log p(y∗ = 1 | X ,y,x∗) dx

+ λ

∫
Ω\ΩF

− log p(y∗ = −1 | X ,y,x∗) dx+ Perα(ΩF ), (5.1)

where Perα is the perimeter of ΩF , weighted by a local metric α(x) = e−γ|∇I|

that depends on the image gradient, and λ is the weight of the dataterm. This
functional favours spatial regularity by penalizing the boundary length of the
foreground region. First, we define an indicator function u(x) that is 1 for x ∈ ΩF
and 0 otherwise. Then, the segmentation problem can be written in a variational
formulation:

min
u∈[0,1]

∫
Ω

%(x)u(x) dx+
1

λ

∫
Ω

α(x)|∇u(x)| dx, (5.2)

where the first term encodes the cost of a pixel to belong to the foreground and
%(x) = log p (u (x) = 0) − log p (u (x) = 1) . The second term of Eq. (5.2) is the
total variation (TV) of the indicator function u which penalizes the perimeter of
the foreground region. Since the TV is not differentiable everywhere, we rewrite
Eq. (5.2) as a saddle point problem:

min
u∈[0,1]

max
|v|≤α(x)

∫
Ω

%(x)u(x) +

∫
Ω

u(x) div v(x). (5.3)

This can be efficiently minimized using a first-order primal-dual method [11].

6 Experimental Results

We evaluate our active learning approach on the benchmark data set from the
University of Graz [14]. It consists of images with ground truth segmentations
and user scribbles. As our method applies for foreground and background seg-
mentation we chose a subset of 44 images from the dataset which contain only
two object classes. As performance measure for this benchmark we use the f1
measure, which is defined as the harmonic mean of precision and recall.

6.1 Benefits of the GP classifier

We compare our approach with the method of Nieuwenhuis and Cremers [8].
There, the data term is computed using a Parzen window (PW) estimator, and



Active Online Learning for Interactive Segmentation 9

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8

F
1

-m
e

a
s
u

re

Batch

GP data term

Parzen data term

Random

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0  1  2  3  4  5  6  7  8

R
u

n
 t

im
e

 (
s
)

Batch

Online Inference Offline Inference

(b)

Fig. 3: (a) Average f-measure over 8 active learning rounds. The GPC steadily
improves the segmentation, because its label queries are more informative for
classification. In contrast, the Parzen window only improves slighty and then
remains at a lower performance level. We also show GPC results where new user
scribbles are chosen randomly and not based on the entropy. This also improves
the segmentation, as it increases the training data, but it is worse than the
entropy-based method. (b) Run time of online and offline inference, averaged
over all images. Note that in batch 0, the online and the offline method take the
same time, because they both build up the initial covariance matrix. However,
in later steps the online computation time drops down significantly.

the training data consists of color information and positions of user scribbles.
We use the same idea, but employ a GPC instead of the PW. Our benefit is
the ability to detect misclassifications using the predictive uncertainty, which is
more strongly correlated to incorrect classifications than for the PW. As a result,
in active learning the GPC generates more informed questions (see Fig. 1). For
a quantitative evaluation, we ran active learning with the GPC and the PW on
the Graz data set (Fig. 3a). Both approaches perform equally well in the first
rounds, but then the GPC (red curve) outperforms the PW (blue curve), because
it asks more informed label queries, while the PW tends to be overconfident. We
also show the results for randomly selected scribbles (magenta curve) instead of
those with the highest uncertainty. We see that random sampling also improves
the classification, as it provides more training data in every round, but the
improvement is smaller compared to selecting the most uncertain segments. This
is because the GP requests the more informative user scribbles.

Some results from the Graz data set are shown in Fig. 4. The left column
shows the images with the inital user scribbles. Columns two and three show
the uncertainties of the GPC (brighter is more uncertain) and the segmenta-
tion after the first learning round. The general segmentation is good, but small
miclassifications occur. However, these often correspond to locations of high un-
certainty, e.g. the lower right corner of the helicopter image or the third peg on
the wardrobe: here the classification is incorrect, but the uncertainty is also high.
This enables the classifier to correct the error in subsequent training rounds.
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Fig. 4: Examples from the Graz benchmark. First column: original images with
initial user scribbles. Second column: classification uncertainties after the first
learning round. Third column: resulting segmentation after the first round.
Note how the algorithm misclassifies some small areas, but the classification in
those same areas is often very uncertain (see, e.g., the third peg on the wardrobe).
Thus, the errors can be corrected by querying more useful, i.e. informative user
scribbles. Last column: final results, obtained after a few further active learning
rounds (between 1 and 5). Here, a high-quality segmentation is obtained.

6.2 Advantage of the Online Inference Algorithm

As mentioned in Sec. 4.1, we use a very efficient online class prediction step. Note
that this is different from an online training step: while the latter is inherently
provided by the IVM approach, the former is a novel contribution. In Fig. 3b,
we show its benefit over the standard offline technique in every active learning
round. Observe that for all but the first learning round the average run time
drops from the order of minutes to the order of seconds. Also note that the
increase in run time over the learning rounds is super-linear in the offline case,
where for the online method it is roughly linear. In the first round, the online
and the offline method perform the same steps, because every pixel is compared
to all training points. Currently, we compute this in parallel on 8 CPU threads,
but we expect a substantial speed-up when using a GPU implementation.

7 Conclusions

We present an efficient active learning approach and show its application to inter-
active segmentation. Our method learns models for background and foreground
adaptively by informed questions based on the classification uncertainty and uses
a regularizer that favors regions with smooth contours. To make the classification
process efficient, we use an online update method that incrementally estimates
the class posteriors. This reduces computation time substantially, without re-
ducing the high segmentation performance of the active learning method.
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