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Abstract

In this paper we introduce a novel RRT extend
function for wheeled mobile robots. The approach
computes closed-loop forward simulations based
on the kinematic model of the robot and enables
the planner to efficiently generate smooth and fea-
sible paths that connect any pairs of states. We
extend the control law of an existing discontinu-
ous state feedback controller to make it usable as
an RRT extend function and prove that all rel-
evant stability properties are retained. We study
the properties of the new approach as extender for
RRT and RRT* and compare it systematically to
a spline-based approach and a large and small set
of motion primitives. The results show that our
approach generally produces smoother paths to
the goal in less time with smaller trees. For RRT*,
the approach produces also the shortest paths and
achieves the lowest cost solutions when given more
planning time.

1 Introduction

Planning with rapidly-exploring random trees (RRT)
(LaValle and Kuffner 1999) has become a popular ap-
proach to robot motion planning. RRT planners are
single-query sampling-based planners that grow a tree
of configurations to eventually cover the entire state
space. A probabilistically optimal RRT variant named
RRT* has been introduced by Karaman and Frazzoli
(Karaman and Frazzoli 2010). RRT* trees grow based
on the notion of a cost: under the assumptions given
in (Karaman and Frazzoli 2011) the solution converges
to the optimum as the number of samples approaches
infinity.

For robots with kinematic or kinodynamic con-
straints, the extend function, the function that grows
the tree by finding collision-free trajectories to new sam-
pled configurations, becomes a key component. Its task
is to connect any pair of states under differential con-
straints which represents by itself a local planning prob-
lem also referred to as the two-point boundary value
problem.

Here, we consider the motion planning problem for
non-holonomic wheeled robots in 2D with the goal of

Figure 1: A smooth motion planning solution computed
by our new extender.

particularly smooth and natural real-time motion gen-
eration for robots in human environments. To this end,
we propose a new extend function for RRT and RRT*
which shall enable the planner to efficiently generate
smooth paths. Previously used extend functions include
motion primitives (LaValle and Kuffner 1999), (Fraz-
zoli, Dahleh, and Feron 2005), (Kalisiak and van de
Panne 2006), (Kalisiak and van de Panne 2007), optimal
controllers (Perez et al. 2012) (Webb and van den Berg
2013), shooting methods (Hwan Jeon, Karaman, and
Frazzoli 2011), splines (Yang et al. 2014), and closed-
loop controllers (Kuwata et al. 2009).

Motion primitives have originally been proposed
for RRT-based planning under differential constraints.
LaValle and Kuffner (LaValle and Kuffner 1999) imple-
ment the extend function as a forward simulation of a
set of predefined discretized controls, so called motion
primitives. The approach satisfies the constraints, is ef-
ficient to compute and easy to implement: the tree is ex-
tended with the primitive that is found to come closest
to the new sampled configuration xnew. However, the
method has several shortcomings: it does not fully solve
the two-point boundary value problem as the orienta-
tion of xnew is ignored, the extension of the tree even
by the closest motion primitive may still be far-off from



xnew, and the concatenation of primitives may lead to
sequences of discontinuous inputs and non-smooth tra-
jectories. The last point was addressed by Frazzoli et al.
(Frazzoli, Dahleh, and Feron 2005) who propose a finite-
state machine called a Maneuver Automaton to allow
correct (and thereby smooth) concatenation of motion
primitives to complex motion trajectories. However, its
use in RRT-based planning has not been studied.

Recently, Perez et al. (Perez et al. 2012) use an op-
timal infinite-horizon LQR controller to connect pairs
of states. The method linearizes the domain dynam-
ics locally, which is interesting from an efficiency point
of view, but will in general not reach the target state
exactly. Webb and van den Berg (Webb and van den
Berg 2013) use a finite-horizon optimal controller as
local planner. They can optimize a certain class of
cost functions to trade off between time and control
effort. Goretkin et al. (Goretkin et al. 2013) use a
finite-horizon LQR controller extended to affine sys-
tems. They can generically extend the algorithm to non-
linear systems by linearizing the dynamics at vertices
in the tree: the obtained approximations are in general
affine. Although optimal control techniques may pro-
duce high-quality solutions to the two-point boundary
value problem, they typically suffer from high compu-
tational costs and numerical issues that can make them
unsuitable for motion planning in real-time.

Hwan Jeon et al. (Hwan Jeon, Karaman, and Frazzoli
2011) use the shooting method to numerically solve the
two-point boundary value problem to obtain an extend
function for RRT*. The method allows for time-optimal
maneuvers of a high-speed off-road vehicle. As with op-
timal control techniques, shooting methods may have
issues with numerical stability and computational costs
for our application.

In a recent work, Yang et al. (Yang et al. 2014) use
splines as RRT extend function. The authors take cu-
bic Bézier splines that guarantee curvature continuity of
paths and are able to satisfy upper-bounded curvature
constraints. With our goal of smooth and natural mo-
tion generation, we consider splines to be a potentially
interesting approach and include a spline-based extend
function into our experimental comparison. However,
instead of cubic Bézier splines which are limited to
curves with continuous curvature, we will use η3 splines,
introduced by Piazzi et al. (Piazzi, Bianco, and Romano
2007) that produce curves with a continuous derivative
of the curvature, therefore generating even smoother
paths than cubic Bézier splines.

Kuwata et al. (Kuwata et al. 2009) introduce closed-
loop RRT (CL-RRT), a modified RRT for real-time lo-
cal lane following with a car using an extend function
based on a closed-loop model. Given a sampled con-
trol input, the method runs a forward simulation using
the vehicle and controller models to predict and then
evaluate extend trajectories.

The contribution of our work is as follows:

• We propose an extender based on closed-loop predic-
tions for a non-holonomic wheeled mobile robot. It

efficiently solves the two-point boundary value prob-
lem by exponentially converging to the goal state
from any start state. We extend the control law of
the original approach by Astolfi (Astolfi 1999) with
a term that leads to quasi-constant path velocities
along local path concatenations – a key ability for
RRT extend functions. We also prove the relevant
stability properties under our modification.

• We systematically compare our approach to two al-
ternative extenders, namely motion primitives (two
sets of different size) and splines. The experiments
demonstrate that our approach outperforms both
methods in many relevant metrics: smoother paths
and shorter planning time (with RRT), shorter paths
(with RRT*), and significantly smaller trees (both).
We also find that our method can benefit most from
the incremental path improvement ability of RRT*
resulting in the lowest cost solutions when given more
planning time.

• To the best of our knowledge, this paper presents the
first systematic study of the impact of different ex-
tend functions on RRT and RRT* performance and
path quality. Its necessity is corroborated by the sig-
nificant variations of key metrics only caused by the
use of different extend functions.

The paper is structured as follows: the next Section
reviews the RRT algorithm and typical extend func-
tions. In Section 3 we describe our approach which is
then experimentally evaluated in Section 4. We discuss
the results in Section 5, and Section 6 concludes the
paper.

2 Rapidly Exploring Random Trees
We briefly review the RRT algorithm for planning un-
der differential constraints. Let X ⊂ Rd be the config-
uration space and U ⊂ Rm the control space. A non-
holonomic wheeled mobile robot can be described by a
differential equation as

ẋ(t) = f(x(t),u(t)) x(0) = x0 (1)

where x(t) ∈ X , u(t) ∈ U , for all t, x0 ∈ X and f is a
function describing the kinematics of the system. The
RRT algorithm solves a feasible kinematic motion plan-
ning problem p: given an obstacle space Xobs ⊂ X , a free
space Xfree = X \ Xobs, an initial state xinit ∈ Xfree
and a goal region Xgoal ⊂ Xfree, find a control u(t) ∈ U
with domain [0, T ], T > 0, such that the unique tra-
jectory x(t) satisfies equation (1), is in the free space
Xfree ⊆ X and goes from xinit to a goal xgoal ∈ Xgoal.
The RRT procedure is outlined in Algorithm 1.

2.1 Extend Function

The purpose of the extend function is to connect new
states to the tree: it grows a branch from xnear to-
ward xrand. The terminal state of the new branch, xnew,
may differ (largely) from xrand depending on the extend
function used. xnew is then added to the tree τ together



Algorithm 1 Rapidly-exploring Random Tree

function RRT(xinit , xgoal)
τ.add vertex (xinit)
while k ≤ K do
xrand ⇐ random state(X )
xnear ⇐ nearest neighbor(τ,xrand)
xnew,ubest ⇐ extend(xnear,xrand)
τ.add vertex (xnew)
τ.add edge(xnear,xnew,ubest)
if xnew ∈ Xgoal then
return extract traj (xnew)

end if
end while
return failure

with the intermediate points of the new local path and
the selected u. The expansion fails if a collision along
the path occurs.

We briefly review motion primitives, the originally
proposed extenders as part of RRT. The approach is
based on the forward propagation of a control input
into a system simulator. Given an initial state x0, an
integration time ∆t, an integration time step ts and a
input ui from a discrete set of controls U = {u1, ..,um},
a trajectory xi(t) is generated by numerically integrat-
ing Eq. (1)

xi(t) =

∫ ∆t

0

f(xi(t),ui(t)) dt+ x0, i = 1, ...,m. (2)

All the controls in U are checked, and the one that
brings the expansion closest to xrand (according to a
distance metric) is stored together with the associated
local trajectory that will be added to the tree τ . To
minimize the time needed to extend the tree, the mo-
tion primitives can be precomputed off-line.

An alternative approach to extending the tree is to
employ a full-fetched local planner that generates tra-
jectories x(t) ∈ Xfree and the corresponding continuous
controls u(t).

2.2 RRT* Extend Function

The extension procedure in RRT* is more complex. It
is based on the concept of near neighbors, the neigh-
bors within a specified radius of a node. The first step
of the extension is to connect a newly added vertex to
its neighbor vertex with minimal cost. The next step is
to rewire the tree: if the path from the newly created
vertex to a near neighbor node has a lower cost than
the near neighbor, then the parent of the near vertex is
changed to the new vertex. Each time the algorithm at-
tempts to connect two vertices a steer function is called
for which RRT extend functions can be used.

3 The Approach: POSQ
The proposed extend function computes closed-loop for-
ward simulations based on the kinematic model of a
non-holonomic wheeled mobile robot. It generates the

trajectory x(t) and controls u(t), t ∈ [0, T ], T > 0,
that connect any given pair of poses. Thus, it solves the
two-point boundary value problem for such kinematic
systems, see Fig. 2. The tree is grown in the configura-
tion space R2 × S1 where each configuration x consists
of the Cartesian position of the wheeled mobile robot
and its orientation, i.e. (x, y, θ).

The approach, originally proposed by Astolfi (Astolfi
1999), solves the problem of exponential stabilization
of the kinematic and dynamic model of the wheeled
mobile robot. It is not an optimal controller but has
provable local and global stability, a light-weight im-
plementation, and generates smooth trajectories. We
believe that for extend functions, optimality is less rele-
vant than efficiency, smoothness and the ability to fully
solve the two-point boundary value problem. This is
particularly true for RRT* for non-holonomic dynam-
ical systems (Karaman and Frazzoli 2013), where the
steering function must fulfil the topological property
(Laumond, Sekhavat, and Lamiraux 1998).

We briefly summarize the original approach (Astolfi
1999) and describe our extension in the next subsec-
tion. Let ρ be the Euclidean distance between the ini-

Figure 2: Trajectories of the controller when steering
the robot from the center to the poses on the circle

tial pose and the goal pose (xnear and xrand in an RRT
notation), φ the angle between the x-axis of the robot
reference frame {XR} and the x-axis of the goal pose
frame {XG}, α the angle between the y-axis of the robot
reference frame and the vector Z connecting the robot
with the goal position, v the translational and ω the an-
gular robot velocity (Fig. 3). Then, the method makes
a Cartesian-to-polar coordinates transform to describe
the kinematics using the open loop model

ρ̇ = − cosα v,

α̇ =
sinα

ρ
v − ω,

φ̇ = −ω,

(3)
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Figure 3: Notation and robot to goal relations

and the feedback law

v = Kρρ,

ω = Kαα+Kφφ.
(4)

As shown in (Astolfi 1999), this feedback law guarantees
smooth trajectories without cusps.

3.1 Our control law
The original approach, however, generates trajectories
of decaying forward velocity bringing the robot to a
stop at each goal. The concatenation of such local paths
would result in final paths of unnatural and slow move-
ments.

Thus, we modify the feedback law so as to have quasi
constant forward velocity at a desired maximum value
across multiple expansions. We will prove that this
modification retains local stability and that the robot’s
heading converges asymptotically to the desired equi-
librium point.

Considering the open loop model in Eq. (3) obtained
by the polar coordinate transform, we define the non-
linear feedback law

v = Kρ tanh(Kvρ),

ω = Kαα+Kφφ .
(5)

Substituting the control law (5) into the open loop
model we obtain the following closed loop model

ρ̇ = −Kρ cosα tanh(Kvρ),

α̇ = Kρ
sinα

ρ
tanh(Kvρ)−Kαα−Kφφ,

φ̇ = −Kαα−Kφφ .

(6)

We now describe the conditions for which local stability
holds and prove heading convergence.

Local Stability We can locally approximate the
closed loop model (6) by

ρ̇ = −KρKvρ

α̇ = −(Kα −KρKv)α−Kφφ

φ̇ = −Kαα−Kφφ

which is locally exponentially stable if and only if the
eigenvalues of the matrix describing the linear approx-
imation of the model have all negative real parts. For
that, we need to have

Kv > 0, (7)

Kρ > 0,

Kφ < 0,

Kα +Kφ −KρKv > 0 .

Considering the closed loop model (6), assume α(0) ∈
]− π

2 ,
π
2 ], and φ(t) ∈ ]nπ, nπ] for all t. Then, if

Kα + 2nKφ −
2

π
KρKv > 0 (8)

holds one has α(t) ∈ ]− π
2 ,

π
2 ] for all t > 0 which means

that the robot trajectory will always stay in this region:
we have defined a trapping region. Thus, together with
the condition Kρ,Kv > 0, the robot will move mono-
tonically towards the origin.

Heading Convergence We want the robot to move
towards to goal xrand but notice in (6) that the goal
position (the origin) can not be reached because ρ is a
singularity point. Thus, we define an arbitrarily small
number to which ρ converges, ρ→ ε, with ε > 0, ρ > ε.
Let us focus on the following reduced subsystem which
describes how the orientation evolves

α̇ = −Kαα−Kφφ+Kρ sinα
tanh(Kvρ)

ρ
,

φ̇ = Kαα−Kφφ .

Given that ρ̇ is strictly negative, we want to find the
conditions for which the above vector field has a unique
equilibrium point (α = 0, φ = 0) to which all trajec-
tories converge asymptotically for all ρ > ε. This is
equivalent to minimizing the orientation error as well as
stopping the robot at xnew, ε meters away from xrand.

If we consider the candidate Lyapunov function

V (α, φ) = (−Kαα+Kφφ)2 + 2 KφKρ (cosα− 1)

tanh(Kvρ), (9)

we can show that

V̇ (α, φ) = 2 KφKρα sinα tanh(Kvρ)[
Kφ +Kα −Kρ

sinα

α
tanh(Kvρ)

]
. (10)

Given that conditions (7) and (8) hold and considering

n = 2, V is positive and V̇ is non-positive in all S2 ={
(α, φ) ∈ R2 | α ∈ ]− π

2 ,
π
2 ], φ ∈ (−2π, 2π]

}
.

It exists a positively invariant set

M =

{
(α, φ) ∈ S2| V ≤

9

4
k2
φπ

2 − 2KφKρ

}
.

which is contained in S2, and it contains S1 ={
(α, φ) ∈ R2 | α ∈ ]− π

2 ,
π
2 ], φ ∈ (−π, π]

}
. M contains

only the equilibrium point (α = 0, φ = 0). Thus, all
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Figure 4: A simple two-step expansion example. With
k being the time index of successive extensions, the
proposed controller extends the tree from xnear(k) to
xrand(k) until the local trajectory enters the disk of ra-
dius γ at xnew(k). The procedure is repeated for k+ 1.
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Figure 5: Translational robot velocity in [m/s] with the
original control law from (Astolfi 1999) (left) and our
control law (right) across the concatenation of two ex-
tensions. For the same two goal poses the new law allows
for much faster movements.

trajectories starting in S1 and contained in S2 converge
asymptotically to the origin according to the Poincare-
Bendixson Theorem.

Notice that we are not solving a stabilization prob-
lem like in the original approach (Astolfi 1999). The new
control law allows us, during expansion of the tree from
xnear towards xrand, to minimize the error in orienta-
tion and stop when the local trajectory is close enough
to the goal xrand. A γ > 0 threshold can be defined
as minimum Euclidean distance that stops the expan-
sion towards xrand. It is guaranteed that the terminal
state xnew is not further away from xrand than γ, which
thus becomes a tunable error bound.The threshold γ
can be seen as the radius of a circle centered at xrand,
see Fig. 4. In practice, γ is chosen to be a few centime-
tres.

The new control law does not remove the velocity de-
cay toward the goal but makes it significantly sharper.
So sharp, that even small values for γ cause the decay
to disappear and allow for quasi-constant forward ve-
locities along the previously explained extension proce-
dure. See Fig. 5 for a comparison. The method is named
POSQ as it acts like a pose controller.

4 Experiments

In the experiments, we evaluate the new extend func-
tion and compare it to two alternative methods, namely
motion primitives (two sets of different size) and splines.
We quantify their impact on planning performance in
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Figure 6: The motion primitive sets, Usmall (left) with
10 motion primitives and Ularge (right) with 77 motion
primitives.

terms of time, tree size and path quality in three dif-
ferent simulated environments. We use both RRT and
RRT* as planning algorithms.

The POSQ parameters are Kρ = 1, Kφ = −1, Kα =
6, Kv = 3.8, γ = 0.15. The two sets of motion prim-
itives Usmall with 10 controls and Ularge with 77 con-
trols are shown in Fig. 6. For the spline-based extend
function we use η3 splines (Piazzi, Bianco, and Romano
2007), seventh order polynomial spline whose paths
have continuous tangent vectors, curvature and curva-
ture derivatives along the arc length.

All extenders share the same integration time step
ts and velocity limits. For each combination of exten-
der/map/planning algorithm we perform 100 runs and
compute the average and standard deviation of all met-
rics. We use uniform sampling and the Euclidean dis-
tance as distance metric.

The RRT* cost function, derived from (LaValle and
Kuffner 1999), has two terms, one for the approximated
path length and one that measures heading changes
along the path, both with equal weights (wd = wq)

C =

Ne−1∑
i=0

wd||Pi+1 −Pi||+ wq (1− |qi+1 · qi|)2
.

Ne + 1 are the intermediate points Pi of the local path
and qi the associated quaternions. The RRT* neighbor
radius is constant at a high value with respect to the
map size, we use a linear neighbor search.

Our implementation is based on the C++ SMP tem-
plate library (Karaman ). All experiments were running
on an ordinary PC with 2.67 GHz Intel Core i7 and 10
GB of RAM.

4.1 Metrics

To quantify planning performance we compute the aver-
ages and standard deviations of the following metrics:
tree size as the number of vertices (Nv), time to find
a solution (RRT) or a first solution (RRT*) (Ts), and
path length in meters (lp).

Smoothness, although being an intuitive concept, is
less straightforward to measure precisely. In (Balasub-
ramanian, Melendez-Calderon, and Burdet 2012), Bal-
asubramanian et al. survey a number of metrics to



quantify movement smoothness. We adopt the following
measures that are relevant in our context.

Let vmax be the maximum magnitude of the robot

velocity vector v, ṽ = v(t)
vmax

the normalized velocity,

and [t1, t2] the time interval over which the movement
is performed.

1. ηnmaJ , the average of the mean absolute jerk normal-
ized by vmax, for which the best value is zero:

ηnmaJ = − 1

vmax(t2 − t1)

∫ t2

t1

∣∣∣∣d2v

dt2

∣∣∣∣ dt,
2. average of the speed arc length ηspal, for which the

best value is zero

ηspal = −ln

∫ t2

t1

√(
1

t2 − t1

)2

+

(
dṽ

dt

)2

dt

 ,

3. average number of peaks ηpm

ηpm = −|Vpeaks |.

with Vpeaks = {v(t) : dvdt = 0, d
2v
dt2

< 0} being the set
of local velocity maxima.

4.2 Test Environments

Planning is carried out in three simulated environments
(Fig. 7). In the office environment, there are few alter-
native ways to the goal. It has several local minima,
the goal lies behind a U-shaped obstacle, and an asym-
metry makes that the shortest path go through a nar-
row passage. The hallway scenario contains more open
spaces and alternative paths to the goal. The random
map environment contains 100 randomly placed square
obstacles. There are many homotopy classes, some re-
quire more or less maneuvers than others. The map size
in all scenarios is 50m× 30m.

5 Results and Discussion

The RRT results are given in Table 1, the RRT* results
in Table 2. The best values in each metric are high-
lighted in bold.

With RRT as the planning algorithm, the proposed
extend function POSQ outperforms motion primitives
and splines in all metrics except path length. It pro-
duces smoother paths and finds the goal in less time
with significantly smaller trees. The low number of
tree vertices and the smaller planning times are mainly
due to the ability of our approach to better follow the
Voronoi bias and deeply enter unexplored regions of the
configuration space. This is unlike, for example, motion
primitives that require the concatenation of many small
local expansions for the same exploration effort. In fact,
all continuous extend functions that fully solve the two-
point boundary value problem possess this property as
also confirmed by the similar trends in the results of the
spline-based extender.

Figure 8: The RRT* cost C computed over 1000 seconds
for the Random Map scenario. The trends are displayed
(mean and standard deviation): in blue the POSQ re-
sults, in red the Motion Primitive ones and in green
the splines. Our approach benefits most from the in-
cremental character of RRT* and results in the lowest
cost solution. The displayed trends are not changing
with more planning time. See also Fig. 9.

The motion primitive extenders find shorter paths
which is not surprising given the much denser trees from
the multitude of small-sized extensions.

With RRT* as planner, our extender outperforms the
other methods in tree size, path length and two of three
smoothness measures. The fact that our method finds
the shortest paths, and so the lowest cost in all the
cases, suggests that it is particularly easy to rewire in
the sense of the cost function, quite in contrast to mo-
tion primitives. This is also pointed out by Webb and
van den Berg (Webb and van den Berg 2013) who state
that the RRT* rewiring procedure is well suited for con-
tinuous extension approaches where reachability of a
state is not compromised. Figure 8 is another indica-
tion in this direction. It shows an example cost trend
when given more planning time. The POSQ extender
can benefit most from the incremental path improve-
ment of RRT*: in Fig.9 is showed a comparison be-
tween the paths obtained after 1000 seconds: definitely
the POSQ generates the smoothest one.

While the proposed extender is smoothest in terms of
the ηspal and ηpm measures, it falls behind the motion
primitive approach in the jerk-related metric ηnmaJ .
This may be explained by the much denser trees with
several factors more vertices that allow solutions with
fewer maneuvers. Regarding the time to find the first
solution, Ts, the results are inconclusive. The high vari-
ance is mainly due to the large number of homotopy
classes, particularly in the random map and hallway en-
vironments. POSQ and the spline-based extender (the
two continuous approaches) grow the tree deeply into



a) Office Scenario b) Hallway Scenario c) Random Map Scenario

RRT

RRT*

Figure 7: The three environments and example solutions found with the proposed extend function for RRT (top row)
and RRT* (bottom row, showing the first solution). The start state (green circle) is always in the bottom left, the
goal region (blue square) in the top right.

Figure 9: Typical RRT* solutions after 1000 seconds corresponding to the costs shown in Fig. 8. Left: the motion
primitive approach generates the path with the high cost. Center: the spline-based extend function allows for a
smoother path. Right: The path obtained by the POSQ extender is the smoothest one.

unexplored regions and discover many different ways
to the goal, also inefficient ones at times. However, as
discussed before, such first solutions can be improved
when given more planning time, particularly well by
the POSQ extender.

6 Conclusions
In this paper we have presented a novel RRT extend
function for nonholonomic wheeled mobile robots. We
have evaluated its impact on planning performance and
path quality and found that it outperforms motion
primitives and a spline-based approach in many rele-
vant metrics. It enables RRT to find smoother paths in
less time with smaller trees, and it enables RRT* to find
shorter paths with smaller trees while being on par in
planning time and smoothness. We also found that our
method can benefit most from the cost-guided rewiring
procedure of RRT* resulting in the lowest cost solutions
when given more planning time.

In future work we will consider the extension of our
method to kinodynamic models and the incorporation
of recent RRT improvements such as regression avoid-

ance and viability filtering. We also plan to develop spe-
cific heuristics for nonholonomic systems that help to
select states in the tree for further expansion.
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Office scenario
Extenders Nv Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 1667 ± 713 0.197 ± 0.09 150.739±18.446 −0.051 ± 0.006 −4.464 ± 0.166 0 ± 0
MP Usmall 13335± 3283.4 2.235 ± 0.597 134.108 ± 8.687 −0.062 ± 0.0006 −5.8648 ± 0.064 37.8 ± 6.7
MP Ularge 14090± 3523.1 2.583 ± 0.720 133.504 ± 8.85 −0.062 ± 0.0007 −5.8901 ± 0.066 21.09 ± 6.1
η3 splines 2369 ± 939.9 0.274 ± 0.108 159.78 ± 14.88 −0.55 ± 0.06 −6.88 ± 0.16 0 ± 0

Hallway scenario
Extenders Nv Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 520.4 ± 379.2 0.050 ± 0.021 85.857 ± 16.740 −0.039 ± 0.007 −3.602 ± 0.282 0 ± 0
MP Usmall 2458.3±868.09 0.388 ± 0.124 72.918 ± 10.072 −0.0631 ± 0.001 −5.237 ± 0.138 22.32 ± 5.7
MP Ularge 2358.6 ± 922.2 0.367 ± 0.127 71.734 ± 9.254 −0.0632 ± 0.001 −5.2528 ± 0.13 11.12 ± 4.4
η3 splines 548.3 ± 514.5 0.0526± 0.026 86.659 ± 18.49 −0.382 ± 0.089 −5.93 ± 0.359 0 ± 0

Random map scenario
Extenders Nv Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 277.2 ± 351.5 0.031 ± 0.022 62.465 ± 9.003 −0.027 ± 0.007 −2.881 ± 0.345 0 ± 0
MP Usmall 1095.1 ± 664.2 0.176 ± 0.104 56.448 ± 5.242 −0.0638 ± 0.001 −4.977 ± 0.099 18.51 ± 4.8
MP Ularge 1124.6 ± 646.4 0.168 ± 0.09 57.27 ± 5.3 −0.0637 ± 0.001 −5.029 ± 0.098 9.48 ± 4.10
η3 splines 519.6 ± 718.6 0.044 ± 0.035 66.686 ± 9.514 −0.3013 ± 0.082 −5.4851 ± 0.337 0 ± 0

Table 1: RRT Results

Office scenario
Extenders Nv Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 1825 ± 785.7 315.1 ± 187.3 105.33 ± 4.96 −0.3261 ± 0.135 −5.128 ± 0.29 23.1 ± 11.1
MP Usmall 13571± 3601.8 731.3± 301.93 131.88 ± 8.35 −0.0622 ± 0.001 −5.865 ± 0.06 38.59 ± 8.1
MP Ularge 14146± 2562.3 933.5± 258.50 134.257 ± 8.849 −0.0623 ± 0.001 −5.897 ± 0.07 30.65 ± 5.6
η3 splines 3438 ± 4254.9 646.5± 483.62 116.4909±6.337 −22.3 ± 6.81 −8.49 ± 0.09 47.30 ± 27

Hallway scenario
Extenders Nv Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 697.9 ± 704 66.9 ± 109.8 54.16 ± 3.26 −0.1430 ± 0.126 −3.6479±0.56 3.1 ± 4.26
MP Usmall 2385.3 ± 987 51.3 ± 31.8 71.0350±9.5819 −0.0631 ± 0.0007 −5.212 ± 0.129 16.2 ± 5.2
MP Ularge 2529.7±1020.4 68.4711± 4.12 71.3390±8.4327 −0.0630±0.0002 −5.2485 ± 0.12 11.3 ± 3.99
η3 splines 3787.2± 14583 637 ± 2921 57.302 ± 4.2401 −9.365 ± 11.91 −7.08 ± 0.59 12.9 ± 13.9

Random map scenario
Extenders Nv Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 400.8 ± 551.2 43.16 ± 90.54 46.11 ± 2.4 −0.0896 ± 0.103 −2.95 ± 0.697 1.3 ± 2.71
MP Usmall 1028.1 ± 597 13.11 ± 12.48 56.66 ± 5.08 −0.0636±0.0007 −4.98 ± 0.10 18.7 ± 4.95
MP Ularge 998.7 ± 535.8 15.4411 ± 14 56.9105±4.7867 −0.0637 ± 0.0005 −5.02 ± 0.08 10.09 ± 4.2
η3 splines 815.7 ± 2421.1 157.8 ± 715.8 48.5212±2.7370 −7.67 ± 11.87 −6.46 ± 0.97 5.0 ± 7.54

Table 2: RRT* Results
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