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Abstract—Inverse Reinforcement Learning (IRL) provides
a powerful mechanism for learning complex behaviors from
demonstration by rationalizing such demonstrations. Unfortu-
nately its applicability has been largely hindered by lack of
powerful representations that can take advantage of various
task affordances while still admitting scalability. Inspired by
the success of sampling based approaches in classical motion
planning, we use adaptive state graphs to model the underlying
Markov decision process (MDP) allowing us to further incorpo-
rate task specific constraints efficiently. We then develop a new
Bayesian IRL (BIRL) algorithm to learn behaviors using sampled
trajectories over the adaptive state graph. We demonstrate the
effectiveness of this approach in the task of learning socially
compliant robot navigation policies.

I. INTRODUCTION

In many complex tasks required of interactive robots the
objective representing the behavior is difficult to specify con-
cretely. Such tasks include socially compliant robot navigation
in which the robot is expected to follow implicit rules like not
splitting groups, not getting too close to people or alternatively
get close to people to serve them drinks etc. This is largely
due to typical conflicting objectives like generating short paths
while not splitting groups of people. It is however, consid-
erably easier to demonstrate such behaviors and therefore
learning from demonstration e.g. via IRL has become the
common approach to succeed in enabling robots to perform
and generalize such tasks.

Most existing IRL approaches are however plagued with
difficulty in handling large state spaces efficiently, mainly due
to poor grid-based discretization of the underlying MDP. Such
discretization also do not allow incorporation of task spe-
cific constraints like kinodynamic and holonomic constraints
common in navigation tasks. The resulting learned behaviors
typically then include policies that may not be realizable on
real robots. Sampling based approaches in motion planning
like Probabilistic Roadmaps (PRMs) by Kavraki et al. [3]
however has been able to deal with large state spaces well
even though their underlying model is a discrete graph.

In the past Guestrin and Ormoneit [2] applied these planning
techniques to Reinforcement Learning (RL) by combining
local controllers into global solutions, but their approach cru-
cially depends on the availability of the environment dynamics
which is uncommon in most IRL tasks. Additionally Neumann

et al. [4] extended the previous approach to handle cases
with unknown rewards and absence of accurate environment
dynamics. They proposed an online RL algorithm that uses
feedback from the environment to adapt the state graph repre-
senting the underlying MDP while handling the exploration-
exploitation trade-off using heuristics. We build upon this work
to develop our IRL learning scheme by adding features over
local controllers and by modifying BIRL likelihood function
to learn reward posterior using sampled trajectories.

II. APPROACH

We model a robot’s decision making task as an MDP
M = 〈S,A, T, r, γ〉 with states and action spaces S and A
respectively. T (s, a, s′) = p(s′|s, a) is the transition function
read as the probability of going to state s′ by performing action
a in state s. γ ∈ [0, 1) is a discount factor while r(s, a) is the
reward obtained by performing action a in state s. A policy
π : S 7−→ A specifies the action to take at a given state. The
goal of the robot is to find the policy π that maximizes its
accumulated rewards.

A. Adaptive State-Graph MDP Representation

We build an adaptive graph over the states of the MDP
where the nodes are samples from the state space and actions
are edges of the graph as described in Neumann et al. [4].
Concretely, the graph G = 〈V, E〉 is used to represent the MDP
so that S := V and A := E . The actions/edges correspond
to arbitrary local controllers. The reward r(s, a) therefore
includes the cost of the local controller a. This permits
inclusion of additional task specific costs directly into the
reward function via reward basis features without additional
complex state space modeling, (e.g. use kinodynamic motion
primitives). Trajectories are thus a sequence of edges in the
graph from a start to a goal node and the optimal policy then
describes which edges to pick at every node. The graph is
iteratively built by online exploration that takes into account
values of nodes as well as sample concentration to focus
adding of new nodes in relevant areas as opposed to naı̈ve
uniform sampling.

The graph is initialized using a set of uniformly sampled
starting states. In our case, we initialize using the centers of
Voronoi cells covering the environment using the human poses.



The graph expansion is guided by an exploration score. This
is a weighted sum of two terms, a term accounting for the
quality of the best path visiting node s and a concentration
term proportional to the number of existing nodes N (s) within
some fixed radius. At each iteration a set of nodes N from
the graph is selected for expansion. From this set, the nodes
which are part of best trajectories from start to goal (in terms of
maximum rewards) are separated into Nb. A refined expansion
set Ne is chosen to be either Nb or N \ Nb with some fixed
probability pb. A node v ∈ V from Ne is then picked with
probability proportional to it’s exploration score and expanded.

Finally new nodes are sampled uniformly around v, then
added to the graph with probabilities proportional to their
exploration scores. The values of these new sampled nodes are
quickly estimated using Gaussian process regression (see Ras-
mussen and Williams [7]) using nodes in some neighborhood.
The graph MDP is iteratively solved using policy iteration
which converges in few steps as only few nodes are added
at each iteration ensuring a quick improvement of the best
trajectories.

B. Bayesian IRL using Adaptive State-Graph (BIRL-G)

Given a set of M expert demonstration trajectories ΞE =
{ξi}, where each ξi is a set of state-action pairs, we want to
recover the reward function. As in Ramachandran and Amir
[6] we assume rewards to be iid and are a linear combination
of features wTf . We seek the reward posterior given by (1).

p(r |ΞE ,ΞG) ∝ p(ΞE ,ΞG | r)p(r) (1)

where ΞG is the set of trajectories generated using the learned
reward function. The BIRL approach of Ramachandran and
Amir [6] uses PolicyWalk which includes solving an MDP
at each iteration to get the policy – which is costly. We
use an iterative procedure inspired by Ng and Russell [5].
In our procedure, at each iteration, we only need to estimate
the Q function of few nodes using the new reward. This Q
function can be estimated by Monte Carlo methods or by
just computing the Q function of the best path. We therefore
develop a data likelihood that directly works on sampled
trajectories as shown in (2). Given a set of starting states Ss,

p(ΞE ,ΞG | r) =
∏
s∈Ss

exp(βQπE(s))

exp(βQπE(s)) +
∑n
i=1 exp(βQπi (s))

(2)
where QπE(s) :=

∑
(s,a)∈ξ Q

π(s, a ; r) for expert trajectories
and Qπi (s) defined analogously for the trajectories generated
using the reward at the ith iteration of the algorithm, n is
the iteration and β is the expert optimality parameter. This
likelihood function is similar to the one of Ramachandran
and Amir [6] when each trajectory is interpreted as an MDP
action. The reward posterior mean can then be estimated using
Markov Chain Monte Carlo (MCMC) techniques. In our case
we compute the MAP estimate using a gradient scheme similar
to Choi and Kim [1]. We skip the equations for gradient
updates here due to space limitations.

Fig. 1. Left: Paths generated using learned rewards showing socially com-
pliant navigation. Colors: green→goal, black→starts, blue→samples (light
means recent) using 460 samples in 10m2 room. Dotted red lines indicate
social links between people (shown with ellipses). Right: Policy loss.

We conduct experiments using simple reward features based
on distances to people and relations links between them to
learn behaviors such as avoid splitting groups, give enough
space around persons. We assume that poses of people and
the relations between them (represented as lines) are available,
and learn policies for moving among the people. See Fig. 1
(left) for resulting paths learned and the algorithm progress.

III. CONCLUSIONS AND FUTURE WORK

We have presented a method for applying IRL algorithms
in large state spaces while incorporating important task con-
straints via an adaptive state graph. We also presented a simple
Bayesian IRL algorithm that takes advantage of this represen-
tation. We have conducted initial experiments to demonstrate
that indeed our approach is able to learn complex behaviors.
In the future, we intend to conduct more experiments as well
as discuss the key theoretical issues that arise to the sampling
and to give guarantees on the learning process.
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