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Abstract— Understanding social context is an important skill
for robots that share a space with humans. In this paper,
we address the problem of recognizing gender, a key piece of
information when interacting with people and understanding
human social relations and rules. Unlike previous work which
typically considered faces or frontal body views in image data,
we address the problem of recognizing gender in RGB-D data
from side and back views as well. We present a large, gender-
balanced, annotated, multi-perspective RGB-D dataset with
full-body views of over a hundred different persons captured
with both the Kinect v1 and Kinect v2 sensor. We then learn
and compare several classifiers on the Kinect v2 data using
a HOG baseline, two state-of-the-art deep-learning methods,
and a recent tessellation-based learning approach. Originally
developed for person detection in 3D data, the latter is able to
learn the best selection, location and scale of a set of simple
point cloud features. We show that for gender recognition,
it outperforms the other approaches for both standing and
walking people while being very efficient to compute with
classification rates up to 150 Hz.

I. INTRODUCTION

Knowledge about humans, their social relations and nor-

mative rules is important for interactive robots to provide

effective and user-friendly services. Recognizing human gen-

der is a key ability to this end. The problem has traditionally

been addressed in the computer vision and surveillance com-

munities whose approaches use visual appearances of faces

[1]–[4], frontal upper-body views [5], [6], or full-body views

[7]–[9]. Image data have, however, drawbacks particularly

in robotics applications: they provide appearance cues only

and strongly depend on proper illumination conditions which

may change frequently and drastically when cameras are

deployed on mobile robots. RGB-D data, on the other hand,

are generally less sensitive to ambient conditions and provide

3D range data that allow for the extraction of geometric cues

as well. Thus, we adopt RGB-D and 3D data for the purpose

of full-body gender recognition in this paper and make the

following contributions:

• We propose a novel gender recognition method based

upon a depth-based tessellation learning approach. This

is an extension of our work on people detection using

a top-down classifier [10]. Our method, while charac-

terizing 3D objects using simple geometric point cloud

features, in addition to the selection of local features

and thresholds, also learns the scale and location at

which these features are computed. In our experiments,
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Fig. 1. 3D and RGB-D data from our human attribute dataset with
corresponding gender classification results. The leftmost image has been
taken with a Kinect v1 sensor, the remaining ones with a Kinect v2. The
numbers below each image are confidences of the boosted classifier, the
sign indicates the predicted gender label (M for male, F for female).

the approach outperforms a HOG baseline clearly and

two state-of-the-art deep-learning methods for RGB-D

object recognition by a small margin on Kinect v2 data

while being easier to learn and faster to compute.

• We present a large, gender-balanced, annotated, multi-

perspective RGB-D dataset with full-body views of

over a hundred different persons captured with both the

Kinect v1 and v2 sensor. The subjects stand and walk

at different distances and relative angles to the sensors

and have given their consent for the use of their images

for research purposes.

II. RELATED WORK

The problem of gender recognition has traditionally been

addressed with visual appearances of frontal faces, mostly

using local binary pattern (LBP) features [1], [5], sometimes

in combination with raw pixel values, haar-like features

[3] or HOG descriptors [2], [6]. The best methods achieve

above 90% accuracy on large datasets with several thousands

of training images. [3], [4] review different classification

algorithms, with SVM performing best and boosting methods

following slightly behind at lower computational cost. In

addition to facial features, some approaches also extract

information from hair and clothing, e. g. [5], leading to even

higher classification rates (96%) at the cost of speed (less

than 1 Hz).

Generalizing the task to full-body views is challenging

due to the high variety in human appearances, poses, and

distances from the sensor, considering e. g. the case of

rear views when no face is visible. [7] use poselets, that

represent small parts of the body under a specific pose, to

recognize various attributes including gender. They achieve

around 82.4% accuracy on a large database with different

poses and viewpoints. [8] examine different combinations of
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appearance-, shape- and color-based features. Their overall

accuracy is 80% on frontal views only. Lastly, [9] employ a

convolutional neural network (CNN) on color images, which

automatically learns the most informative features during

training. They achieve an accuracy of 80.4% on a dataset

of 924 full-body images, including rear and frontal views.

The reader is also referred to the survey in [11] where the

authors compare the results of different visual face-based,

body-based and gait-based gender recognition techniques.

Looking at methods that take 3D information into account,

[12] recognize gender from a large set (2484 persons) of

360◦ full-body high-resolution laser scans created with an

expensive stationary scanner. The approach requires several

costly steps including hole-filling, mesh smoothing and nor-

mal computation and assumes no clothing. [13] compute

skeleton- and surface-based geometric features (such as

torso-to-hip distance) on 3D point clouds captured with a

Kinect v1 for the purpose of people re-identification. First

preliminary results on RGB-D gender recognition are pre-

sented in [14] but the authors apparently focus only on frontal

images where the upper body is fully visible. Their method

relies on the availability of a skeleton tracking algorithm.

Unlike these methods, we present a full-body gender

recognition algorithm using consumer-grade RGB-D sensors

that predicts gender with an average accuracy of 91% for

standing persons and 87% including walking people over a

large number of different body orientations and distances to

the sensor. Our method solely relies on 3D point clouds, is

very fast to compute (150 Hz) and requires only minimal

preprocessing of the data.

Datasets: While there exists a large number of color

image-based databases for gender recognition [15]–[19],

there are only few suitable full-body RGB-D datasets.

Datasets such as our own RGB-D people dataset [20] for

person tracking or the BIWI RGBD-ID dataset [21] contain

too few individuals or are insufficiently gender-balanced to

train a reliable gender classifier. The IIT RGB-D person re-

identification dataset [13] includes 79 people walking down

a hallway mostly in frontal or rear view. In the TUM gait

from audio, image and depth database [22], people also

walk mostly into the same direction. None of these datasets

include data captured with the new Kinect v2 sensor, which

provides a significantly improved depth resolution.

Thus, the gender- and age-annotated dataset presented here

(see Sec. IV for details) is the only one to include multiple

complex walking patterns so as to have many views of

people at various distances to the sensor and relative orien-

tations. It also contains a close-up sequence that is valuable

for human-robot interaction. Unlike other RGB-D datasets,

our dataset has more participants (118 persons), is largely

gender-balanced, and uses both the Kinect v1 and Kinect v2

sensors. This makes it the largest and most complete dataset

for the purpose of human attribute recognition in RGB-D.

III. OUR METHOD

We propose a novel method for gender classification based

upon our existing work on 3D object characterization for the

task of person detection in 3D range data [10]. The method

takes a bottom-up top-down approach where we classify

object detection hypotheses from a bottom-up classifier using

a learned top-down model. The bottom-up classifier can

either be a simple region-of-interest (ROI) detector or a

more sophisticated detector, typically tuned for higher recall.

Here, we focus on the top-down method and assume to

have a simple ROI detector which extracts candidate person

detections from the scene in the form of 3D point clouds.

The top-down method characterizes the point cloud by a

set of features computed on the measurements within axis-

aligned voxels on the 3D objects and uses AdaBoost to create

a strong classifier with the best features and voxels. What

is special about this method is that the boosted classifier

not only selects the best features and thresholds, but also

the best combination of voxels on which these features have

found to be informative. Thus, the classifier also learns the

best scales and locations of features on the 3D object for

the classificiation task at hand. This allows the robust and

stable description of complex articulated shapes, as will be

demonstrated in the experiments.

A. Tessellation Generation

We assume persons to fit into a fixed-size bounding

volume B, centered around the median in x and y of the

point cloud. The size of B can either be fixed and taken

from the maximum expected object size or learned from a

training set as in [10].

We subdivide the volume into voxels which leads to

the question of how a volume can be tessellated into a

collection of smaller volumes, a problem well known as

tiling in computational geometry. For the sake of simplicity,

we consider only axis-parallel voxels which reduces the

complexity of the problem but still leaves an infinite number

of tessellations of B. Thus, we define a set of proportion

constraints C to exclude extreme aspect ratios of voxels and

a list of increments s by which voxels will be enlarged. Each

element c = (w, d, h) ∈ C is a width-depth-height triplet

with multipliers of the respective voxel dimension.

The resulting procedure, Algorithm 1, generates all pos-

sible voxel sizes subject to C and s. Defining the remainder

after ceiling-division rem(a, b) as |a − ⌈a
b
⌉b|, the algo-

rithm tests whether voxels can fill a volume B without

gaps and subdivides B into a regular grid. The function

Tess(B, w, d, h,∆w,∆d,∆h) produces a regular face-to-

face tessellation of B with voxels of size (w, d, h) and

offset (∆w,∆d,∆h) to also allow voxels that overlap each

other. The algorithm generates gapless subdivisions of B that

are complete in that no tessellation is missing under the

given constraints. In contrast to [10], we also allow slightly

protruding voxels with a tolerance θ.

As constraints we choose scaling factors s = (0.1,

0.2, ..., 0.8) [m] and proportions C being the set of all

permutations of {{1, 1, 1}, {1, 1, 1.25}, {1, 1, 2}, {1, 1, 2.5},

{1, 1, 3}, {1, 1, 4}, {1, 1, 5}, {1, 1, 6}, {1, 1, 8}, {1, 1, 10},

{2, 2, 3}, {4, 4, 2}, {4, 4, 3}}. These constraints extend the

ones considered in [10] to account for more detail in the
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Algorithm 1: Compute all axis-parallel tessellations T
of a volume B.

Input: Bounding volume B of size wB×dB×hB , set of voxel
proportion constraints C, list of voxel scaling factors s, protrusion
tolerance θ. Output: Set of all possible tessellations T
T ← {}
foreach sj ∈ s do

foreach ck = (wk, dk, hk) ∈ C do
w = sj · wk; d = sj · dk; h = sj · hk

if rem(wB, w)<θ ∧ rem(dB, d)<θ ∧ rem(hB, h)<θ
then
T ← T ∪ Tess(B, w, d, h, 0, 0, 0)
T ← T ∪ Tess(B, w, d, h, w

2
, d
2
, h
2
)

end

end

end

return T

Fig. 2. Left: person candidate point cloud, centered around the median in
x and y. The other pictures show example tessellations of the bounding vol-
ume B generated using our tessellation algorithm. We also allow protruding
voxels, shown in the rightmost picture.

data and lead to 134 valid tessellations, examples are shown

in Fig. 2.

B. Classifier Training

Let Tj be the jth valid tessellation and V i
j its ith voxel.

Then, for each V i
j of all generated Tj’s, we determine the set

P = {x1, . . . ,xn} of points inside the voxel’s volume. With

the goal to describe shape properties locally, we then com-

pute a set of nine simple 3D point cloud features f1, ..., f9
that characterize geometrical and statistical properties of P ,

see Table I. Most of them can be computed very efficiently

from the points’ scatter matrix via eigenvalue decomposition

and none of them require estimation of the surface normals.

Training samples are formed by stacking the features of all

voxel point clouds of all tessellations into one large feature

vector and associating the corresponding ground truth gender

label. We train an AdaBoost classifier with nweak decision

stumps as weak learners. After training, the final model

is given by the collection of all voxels in which at least

one feature has been selected. The resulting strong classifier

achieves a double objective, it selects the best features (‘best’

quantified by the AdaBoost voting weights) and selects the

optimal subdivision Topt of B for the classification task at

hand. The method can select an arbitrary number of features

in each voxel – a large number, for instance, means that the

voxel contains a particularly salient local shape – and may

also select a mixture of voxels from different tessellations.

Note that the approach uses 3D point cloud data only.

Description Expression

Number of points The point count of P denoted as n. f1 = n

Density Captures the normalized point density w.r.t. the
entire point cloud: f2 = n

NB

Sphericity Captures the level of sphericity from the ratio of
the eigenvalues λ1, λ2, λ3 extracted from the

scatter matrix of P . f3 = 3 λ3∑
i
λi

where λ1 >

λ2 > λ3

Flatness Measures the degree of planarity from the

eigenvalues. f4 = 2λ2−λ3∑
i
λi

Linearity Captures the level of linearity from the eigen-

values. f5 = λ1−λ2∑
i
λi

Standard deviation
w.r.t. centroid

Measures the compactness of points in P , f6=
√

1

n−1

∑

i (xi − x̄)2 where x̄ is the centroid.

Kurtosis w.r.t.
centroid

Captures the peakedness of points in P , fourth
centralized moment of the data distribution in
P . f7 =

∑

i (xi − x̄)4/f6.

Average deviation
from median

Alternative measure of compactness. f8 =
1

n

∑

i ‖xi − x̃‖ where x̃ is the vector of in-

dependent medians x̃ = (x̃, ỹ, z̃).

Normalized
residual planarity

Alternative measure of flatness. Squared error
sum of a plane fitted into P normalized by

n. f9 =
∑n

i (a xi + b yi + c zi + d)2 where
a, b, c, d are the parameters of the plane derived
from the eigenvalues of the scatter matrix.

TABLE I

POINT CLOUD FEATURES

IV. HUMAN ATTRIBUTES DATASET

In this section we present our human attribute dataset,

which is motivated, as mentioned above, by the limitations of

existing datasets for the task of full-body, multi-perspective

gender classification from RGB-D data. We acquired and

annotated an RGB-D dataset of 118 persons (54 male, 64

female) under controlled conditions. The mean age is 27

years (σ = 8.7), the age of the youngest participant is

4 and the oldest 66 years. The data has been collected at

15 Hz in three different indoor locations under controlled

lighting conditions and annotated with gender and age. The

subjects performed several standing and walking patterns

that have been designed to cover all relative orientations

and the full RGB-D sensor range between 0.5m to 4.5m.

The sensors used are the ASUS Xtion Pro Live (internally

similar to Kinect v1) and the Kinect v21 so as to make it

possible for researchers to study effects of different RGB-D

data qualities. The sensors were stacked on top of each

other and recorded all sequences at the same time. We

did not notice any cross-talk effects between the sensors

which is likely due to the different measurement principles,

structured light for Kinect v1, time-of-flight for Kinect v2.

They were mounted at around 1.5m height and tilted slightly

downwards, approximately replicating the setup of a typical

mobile robot or handheld device.

For each participant, we recorded four different sequences.

In sequence 1 the subject is standing at around 2.5m distance

from the sensor and rotates clockwise in 45◦ steps (no

continuous data capture, 1 image per step). Sequence 2

1About 75% of the data were recorded using a developer preview version
of the Kinect v2 sensor. We did not observe any notable difference in data
quality compared to the final version, apart from the 4.5m range limitation.
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Fig. 3. Example images from our RGB-D human attribute dataset. The first
two images are part of sequence 1 (static poses), images 3–5 are included
in sequences 2 and 3 (walking patterns), and the last image is part of
sequence 4 (close-up interaction).
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Fig. 4. Standing and walking patterns that people in our dataset performed.
(a) Standing pose in 8 different orientations, at around 2.5m distance to the
sensor. (b) A complex walking pattern, designed to capture a large variety
of poses and distances to the sensor. (c) Circular walking pattern in both
directions. (d) A close-up human-robot interaction pattern. dmin and dmax

denote the Kinect v2’s minimum and maximum depth sensor distance and
dfull the distance above which a person is fully visible in our setup.

(typical length ∼370 frames) consists of a video of the

person performing a complex walking pattern so as to capture

various distances from the sensor and relative orientations. In

sequence 3 (∼300 frames), the person walks on a circle that

covers almost the entire view frustum, in both clockwise and

anti-clockwise direction. Finally, sequence 4 (∼280 frames)

simulates a close-up interaction with a robot, where the

subject steps back, forth and sideways in front of the sensor

as if he/she is physically interacting with the robot’s touch

screen or manipulator. The sequence is thought to be a

relevant benchmark for human-robot interaction that contains

many vertical and horizontal occlusions of people as well as

cases of missing out-of-range depth data. Fig. 4 visualizes the

patterns in sequences 1–4 and Fig. 3 shows some example

color frames from our dataset.

We further post-processed the data (see Fig. 5). We

computed foreground segmentation masks and point cloud

surface normals which were required for the deep-learning

classifier described below. As a result, our dataset’s format

is largely compatible with the University of Washington’s

(UW) RGB-D object dataset [23]. To compute the foreground

mask, we applied a depth-based ROI extraction method that,

similar to [24], projects a height map onto the ground plane

Fig. 5. Post-processing of the data. Left: Initial color image and colorized
depth image of a person from sequence 2, recorded with the Kinect v2.
Middle: foreground segmentation mask. Right: Point cloud normals for a
person close to the sensor (sequence 4, distance <1.0m) and a subject in a
static pose (sequence 1, distance ca. 2.5m).

and finds a local maximum. We then center a cylinder at the

maximum and mark all points inside the cylinder and above

ground as foreground. Normals are computed using a k-NN

method with k = 25.

In total, the dataset contains around 131,800 RGB-D

frames which results in approximately 300 GB of data. 105

participants (47 male, 58 female) have given their consent

for sharing their images with other researchers, to which we

will grant access to this data upon request at our website.

V. EXPERIMENTS AND RESULTS

In the experiments, we investigate the ability of the tessel-

lation learning approach to recognize gender of the subjects

in our dataset using data from the Kinect v2 sensor. We com-

pare our approach, which relies solely on 3D range data, with

two state-of-the-art deep-learning methods for RGB-D object

recognition and an RGB-D histogram of oriented gradients

(HOG) approach. Concretely, the considered methods are:

• Histogram of oriented gradients (HOG) and histogram

of oriented depths (HOD), computed on the RGB and

D image, respectively. HOG is a successful and widely

used descriptor for person detection in image data, HOD

has equally been used for this purpose in depth data

[20]. The two feature vectors are concatenated and then

fed into a linear SVM. We evaluate two window sizes,

32×64 and 64×128, and use the HOG and SVM C++

implementations provided by the OpenCV library.

• Convolutional-recursive neural networks (CRNN).

CRNNs are a recent deep-learning method by Socher

et al. [25] for RGB-D object recognition. We use

the Matlab code provided at the authors’ website,

which we had to modify to use distinct training/test

splits on a per-person basis, and to reduce memory

consumption. In addition to the softmax classification

layer as proposed in [25], we also used an alternative

linear SVM classification stage. The results in this

section were obtained using the SVM classifier, as

experiments showed no significant difference between

the two classifiers for the task at hand.

• Hierarchical matching pursuit (HMP) by Bo et al. [26]

is another state-of-the-art deep learning method. The

approach uses sparse coding techniques and has, like

the CRNN method, also been specifically designed for

RGB-D object recognition. In addition to the foreground

masks required by CRNN, HMP also requires point
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Sequence (1)

Standing

(1)–(3)

+Walking

(1)–(4)

+Interact.

(1)–(4)

d>0.8m

HOG32 84.78% 70.55% 70.70% 70.55%

HOG64 86.27% 74.10% 74.36% 74.33%

CRNN 86.64% 83.46% 83.73% 84.10%

HMP 88.07% 85.28% 86.10% 85.42%

Ours 91.07% 86.41% 85.29% 87.47%

Fig. 6. Average gender classification accuracy: HOG with window sizes
32×64 and 64×128, CRNN, HMP, and our proposed tessellation learning
classifier. For the top-down classifier, which only operates on the depth
modality, we use nweak = 500. The other methods use both color and
depth. The last column shows results if we ignore all test samples closer
than 0.8m distance to the sensor.

cloud normals as an input which we provided as part

of the post-processing steps of our data (see Sec. IV).

Here, we also use the Matlab implementation provided

by the authors, which had to be modified slightly to

process our training and test splits.

For training these classifiers, we form the training set by

concatenating all four sequences of all 118 persons and split

it into equally-sized training and test splits on a per-person

basis. By never including the same person instance in both

training and test set, we want to ensure that the classifiers do

not learn individual person appearances. For each classifier,

we perform at least 10 runs of repeated random sub-sampling

validation with a training/test set split ratio of 1:1 to ensure

that there is always sufficient person variety in the training

set. As sequences 2 to 4 are recorded with 15 fps which gives

a large number of locally similar frames, we subsample every

5th frame (for CRNN & HMP every 20th) to keep learning

times within reasonable bounds.

We evaluate our tessellation learning approach for both

nweak=100 and nweak=500 weak classifiers. The method is

implemented in C++ in two variants, a regular non-optimized

version that runs on a single core and an optimized version

that uses OpenMP to parallelize feature calculations on the

CPU. The two variants will be considered when evaluating

inference performances of the different approaches. We use

the AdaBoost C++ implementation by OpenCV. Our code

will be made publicly available as a ROS package upon

publication of this paper.

A. Classification Accuracy Results

Figure 6 shows the average classification accuracies (over

multiple validation runs) for the different sequences in the

dataset: for the eight standing poses of sequence 1, the

standing poses and the two walking patterns (seq. 1–3),

the entire dataset (seq. 1–4) and the entire dataset except

test samples with persons closer than 0.8m to the sensor,

below which we observed noise and missing data artefacts

produced by the Kinect v2 sensor. It can be seen that all

methods achieve more than 80% accuracy under the rather

controlled conditions of sequence 1. As soon as people start

walking, and the shapes of people become more diverse

and articulated, motion blur starts to play a role and the

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6

0.6

0.7

0.8

0.9

HOG 32x64 CRNN Ours

HOG 64x128 HMP

Fig. 7. Average accuracy of each classifier as a function of person-to-sensor
distance in meters, obtained on the full dataset containing sequences (1) to
(4). The sharp decline at around 4.5m distance is due to the maximum
range limit of the developer preview of the Kinect v2 sensor.

18013590450

0.6

0.7

0.8

0.9

HOG 32x64 CRNN Ours

HOG 64x128 HMP

Fig. 8. Average gender classification accuracy of each classifier as a
function of person orientation in degrees (same parameters as in Fig. 7).
0◦ means that the person is looking into the RGB-D sensor.

HOG-based methods drop to around 70%. CRNN and HMP

both perform fairly solid across all sequences, with HMP

in all cases being about 2% better than CRNN. A similar

observation was also made by [25] on the UW RGB-D object

dataset. See also Fig. 1 which shows example classification

results along with their input images.

Despite not using any color information from the RGB

image, our proposed tessellation learning method generally

outperforms all other methods on the task of full-body gender

classification. Only for close-range subjects in the interaction

sequence 4, HMP is slightly more accurate. Examples for

which our methods fails under close-range conditions are

shown in Fig. 9.

We further analyze these results with respect to relative

distance and body orientation.

Impact of distance to sensor: Fig. 7 shows the classi-

fication accuracy against person distance to sensor. HOG,

CRNN and HMP deliver relatively constant results in terms

of accuracy across the available RGB-D sensor range. At

very close-range (<0.6m), our tessellation approach breaks

down as the point clouds provided by the sensor extend

beyond the near clipping plane, such that the shape of the

person becomes very hard to distinguish (Fig. 9). Here, the

other methods could be in advantage because they can fall

back onto the RGB image, which – at this close distance –

is potentially of very high resolution. At > 4.2m distance,

parts of the point cloud start to vanish at the far clipping
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Fig. 9. Example RGB-D images where our tessellation learning approach
fails to classify the person’s gender correctly. Problems mainly occur at
the sensor’s near and far clipping planes, and with certain types of black
clothing. The RGB image is shown just for illustration purposes, and is not
used by our method.

plane. The drop in performance of the tessellation learning

approach is thus due to limitations of the depth sensor rather

than the method itself.

Impact of person orientation: For sequence 1 of the

dataset, we can directly determine person’s orientations in

45◦ steps from the frame number. For the other sequences,

we track the center of the person blob using a Kalman

filter-based nearest-neighbor tracker with constant velocity

motion model, and then determine the orientation from the

track velocity estimates. As can be seen in Fig. 8, gender

recognition is rather stable across relative view angles for all

methods. The deep-learning methods excel on rear views of a

person (180◦), whereas for our tessellation learning method,

rear views appear to be slightly more difficult than frontal

or side views.

B. Resulting Learned Tessellation

With the encouraging results of the previous subsection,

we seek to better understand the learned tessellation. First,

we examine if it actually makes sense to learn a volume

subdivision over the object as a combination of voxels from

different tessellations versus a predefined regular tessellation.

We compare the learning approach with a grid of cube-

shaped voxels of fixed size. We use the same nine point

cloud features and train an AdaBoost classifier with the same

number of weak classifiers on sequence 1 of our dataset.

Fig. 11 shows the classification accuracy over several grid

sizes. It can be seen that the learned tessellation performs

clearly better than the best tessellation using cube-shaped

voxels of size 0.2m.

Fig. 10 (left) shows the resulting tessellation learned by

our method using 500 weak classifiers on the full dataset.

The most commonly used features in descending order

of frequency (in brackets) are f3 (94), f5 (84), f2 (64),
f6 (64), f9 (61), f4 (50), f8 (50), f7 (20), f1 (13). From the

wireframe representation, it can be seen that the highest

concentration of voxels is located at above waist height and

around the upper body, indicating that these regions contain

more relevant information than e. g. the legs. A similar

observation can be made when allowing only fixed-size cube-

shaped voxels of size 0.2m with nweak=100 (Fig. 10, right).

C. Runtime Performance Results

Runtime performance is key in applications of robots in

real-world human environments, particularly because they

may be surrounded by several persons at the same time

Fig. 10. Learned best tessellations using 500 weak classifiers (left two
pictures), trained on the full dataset. Right: Learned regular tessellation
using only cube-shaped voxels of side length 0.2m, trained on seq. (1).

nweak

Tessellation type 100 500

Regular tessellation 0.1m 75.93% 76.49%

Regular tessellation 0.2m 83.19% 84.16%

Regular tessellation 0.3m 81.54% 82.96%

Learned tessellation 89.75% 91.07%

Fig. 11. Comparison of gender classification accuracy of the tessellation
learning approach using the learned tessellations with mixed-size voxels
(selected by AdaBoost from all voxels across all generated tessellations),
against the same method with only a set of fixed-size voxels with side length
0.1m, 0.2m and 0.3m.

that all need to be classified. We therefore analyze the time

it takes for all methods to predict the gender class given

an RGB-D image. For the comparison, we assume that

the RGB-D data have already been pre-processed, i.e. the

person has been detected and cropped out from the RGB-D

image or point cloud, second, point cloud normals have

been calculated (required for the HMP method), and third,

the sub-cloud containing the person has been transformed

into the origin of a local coordinate frame (required for our

method). We measure the time it takes to train the classifiers

on sequence 1 of the dataset that contains the eight standing

poses, and the time it takes to classify a single person,

averaged over a large number of frames.

We anticipate that the comparison is not fully fair at this

point because CRNN and HMP are implemented in Matlab

whereas all other methods are implemented in C++. We

believe, however, that the comparison is still able to reveal

a trend that we may see in the light of Matlab code running

10× to 100× slower than C++ code. The computer used is

a regular desktop PC with Intel Core i7-2600 CPU.

As expected, the runtimes for learning and prediction

in Fig. 12 show that the deep-learning methods are com-

putationally most expensive in both training and test-

ing. The HMP approach, although it uses much higher-

dimensional feature vectors at the classification stage than

CRNN (188,300 vs 32,768) still performs about 2.5× faster

during testing. Our tessellation learning approach is very fast.

The non-optimized implementation achieves more than 40

Hz for classification, the parallelized variant on four CPU

cores even 150 Hz. This is still clearly the fastest method

even if we assume a conservative speed up factor of 100 for

a C++ implementation of CRNN and HMP.
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Training

full seq. (1)

Testing

single frame

HOG 32x64 < 1 min 90 ms

HOG 64x128 4 min 120 ms

CRNN (Matlab) 420 min 7500 ms

HMP (Matlab) 35 min 3000 ms

Ours, 1 thread – 24.0 ms

Ours, 4 threads 17 min 6.7 ms

Fig. 12. Average training and testing durations for the different methods.
The tessellation learning approach is clearly the fastest classification method
even if we assume a conservative speed up factor of 100 for a C++
implementation of CRNN and HMP.

VI. CONCLUSION

In this paper, we presented a novel tessellation learning

method for gender classification in 3D point clouds that

achieves up to 91% accuracy on standing people and 87%

when including walking people without using any color

information. It outperforms an RGB-D HOG baseline by a

wide margin and two state-of-the-art deep-learning methods

for RGB-D object recognition by a small margin while being

very fast to compute. The approach, based upon our previous

work on people detection [10], characterizes objects by a

selection of the best local shape features and thresholds, as

well as the best scales and locations at which these features

are computed on the 3D object. Our results underline the

importance of scale when characterizing objects – a rather

under-explored problem in the context of interest point-based

recognition methods as pointed out in [27].

The result also indicates that much gender-relevant in-

formation is contained in the depth image and that RGB

data may even distract the model from proper classification.

However, more systematic experiments are needed to support

this conjecture.

We also presented a new large-scale annotated RGB-D

dataset for human attributes with full-body views of 118 per-

sons captured with both first- and second-generation Kinect

sensors.

In future work we plan to also incorporate color features

and evaluate the robustness of tessellation learning for the

general task of RGB-D object recognition. On-going work

is also concerned with the integration of this approach onto

a real-world service robot in crowded environments.
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