
Detecting Conversing Groups
with a Single Worn Accelerometer

Hayley Hung∗

TU Delft
Delft, The Netherlands
h.hung@tudelft.nl

Gwenn Englebienne∗

University of Amsterdam
Amsterdam, The Netherlands
g.englebienne@uva.nl

Laura Cabrera-Quirós
TU Delft

Delft, The Netherlands
l.c.cabreraquiros@tudelft.nl

ABSTRACT
In this paper we propose the novel task of detecting groups of con-
versing people using only a single body-worn accelerometer per
person. Our approach estimates each individual’s social actions
and uses the co-ordination of these social actions between pairs
to identify group membership. The aim of such an approach is to
be deployed in dense crowded environments. Our work differs sig-
nificantly from previous approaches, which have tended to rely on
audio and/or proximity sensing, often in much less crowded scenar-
ios, for estimating whether people are talking together or who is
speaking. Ultimately, we are interested in detecting who is speak-
ing, who is conversing with whom, and from that, to infer socially
relevant information about the interaction such as whether people
are enjoying themselves, or the quality of their relationship in these
extremely dense crowded scenarios. Striving towards this long-term
goal, this paper presents a systematic study to understand how to
detect groups of people who are conversing together in this set-
ting, where we achieve a 64% classification accuracy using a fully
automated system.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems—Human
Information Processing; H.3.1 [Information Storage and Retrie-
val]: Content Analysis and Indexing—Indexing Methods; G.3 [Prob-
ability and Statistics]: Time Series Analysis

Keywords
Human behavior; human factors; wearable sensors; data mining

1. INTRODUCTION
In this paper, we propose to detect conversing groups automati-

cally in dense crowds during social gatherings using only a single
worn accelerometer per person. Our long term goal with such a
set-up is to be able to analyse socially relevant behaviour in such
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gatherings to understand if people enjoyed themselves, the type of
mood of the event, whether people would come again, etc. This
requires us to try to get a deeper understanding of what is happening
in the crowd in terms of the social interactions and relationships
between the people. By taking inspiration from findings in social
psychology, we aim to address such problems while maintaining
privacy and minimising additional effort of the user.

To that end, in this paper, we go significantly beyond prior work
where the state of the art addressed whether socially relevant actions
during conversations, such as speaking, could be estimated from
just a single body worn accelerometer [13]. Our aim is to try to
understand deeply the problems and opportunities of automatically
analysing social behaviour using such an approach, as a starting point
for other systems that may wish to embellish with more sensors, or
indeed to strip down to as few sensors as possible.

Importantly for research in estimating social attributes such as
dominance[15], leadership [16], or cohesion [14], one of the most
informative features is typically based on the management of turns
(turn-taking patterns) within a group. Therefore, the ability to auto-
matically detect where a conversing group is, and when someone
is speaking, are vital action units from which semantically higher
level social concepts can be inferred.

Specifically in this paper, we address the task of estimating whether
two people are conversing in dense crowded social gatherings by
just measuring the movement via a body worn accelerometer. It
is worth considering this modality as in such scenarios, relying on
proximity alone to make robust detections is challenging as the de-
tections are bursty. Audio data would be contaminated by significant
background noise from all conversations happening at the gathering
making robust audio processing too challenging. Moreover, the use
of audio can be considered privacy invasive to wearers.

Prior work has used infrared (IR) sensors to detect the proximity
of others as a proxy for interaction [4, 11] in much less crowded
scenarios which showed poor accuracies when accumulated over
short periods (5 minutes) [4]. The lack of reliability of IR sensors
is partially caused by how people choose to place themselves in a
space which can depend on the shape of a room or its furniture for
example [22]. Under such scenarios audio sensors have been used
to detect conversational interactions [5, 4, 11, 20] robustly.

The Scenario Challenges.
As already mentioned, in this paper, we address the problem of

addressing socially relevant behaviour in dense crowded social gath-
erings such as the conference pictured in Fig. 1. Note that this image
captures just a small corner of the entire space of the event, which
in this case consisted of 300 participants. In such social settings,
groups can tend to form, merge, and split, but still remain together
spatially as different social networks with common acquaintances
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Figure 1: The complexity of crowded social encounters.

are found in the same physical space. For large groups (> 5 peo-
ple) sustaining a single informal conversation is not possible [8].
However, perhaps due to the familiarity of the group members with
each other, they may tend to orientate themselves towards the entire
group, while gazing at the few people they are actually talking to.
An example of this is shown in the crowded social gathering in
Fig. 1 where the highlighted group are all acquainted with each
other. Although there are 3 different conversing groups (shown by
the red lines), the people still try to remain quite open to starting
a conversation or including one of the others in their conversation
at any moment. Therefore relying on physical cues such as just
directed proximity and body orientation also does not address the
problem sufficiently well. Using radio-based sensors to detect prox-
imity allows for slightly less direction-specific detections. However,
when events are densely crowded, it is likely that more people will
be detected as being proximate than are actually participating in a
conversation, or indeed could potentially converse together.

Despite these challenges, the automated analysis of interactive
behaviour has many potential applications, of both scientific and
commercial nature. For example, wearable sensors can be used for
the analysis of individual and social behaviour in large crowds, for
on-line evaluation of the success-rate of social events such as con-
ferences or trade fairs, for the inclusion of social factors in handling
people logistics in massive crowds such as at large sport events.

An important requirement for such a device is that wearers must
not feel as if their privacy is invaded. Therefore, it must be unobtru-
sive and their raw speech should not be recorded.

Robust wireless transmission of real-time measurements is chal-
lenging in situations with many nodes in a restricted area. It is clear
that additional sensors such as extra accelerometers on different
parts of the body, gyroscopes or a magnetic compass would provide
additional information, at the cost of increased bandwidth require-
ments and device price, and that this could lead to improved recog-
nition rates. In this work, we focus on showing how surprisingly
informative the lowly accelerometer is.

The practical appeal of such a system is that the use of a single
sensor significantly reduces the power consumption. In addition,
unlike mobile-based applications, designing for incentivised uptake
(to compensate for increased battery usage and consent to the access
of private personal data) is not necessary. One can imagine such a
device could be easily attached to a conference badge, for example
without further intervention from the wearer.

Theoretical Issues.
Experimentally, since our aim is to carry out a systematic study

of how to detect conversing groups, we provide here a more formal
definition by social psychologist Adam Kendon [17] of what we pre-
cisely mean by this. Kendon made clear distinctions between differ-
ing taxonomies of interacting groups. Co-located and co-ordinated
group behaviour were named focused encounters when for exam-
ple, people gathered together to perform in a marching band, play
football, or watch a match. Within the set of all possible focused
encounters are a specific type, called F-formations which define

a small group of people who spatially and orientationally arrange
themselves to facilitate conversation. An F-formation arises when

“two or more individuals in close proximity orient
their bodies in such a way that each of them has an
easy, direct and equal access to every other participant’s
transactional segment, and when they maintain such an
arrangement, they can be said to create an F-formation”
[6](p.243).

Importantly, this definition makes explicit the fact that it is not nec-
essary for someone to speak at all while being in an F-formation.
However, other behaviours during participation in an F-formation,
which for example correspond to listening, are still clearly impor-
tant parts of being in a conversation. Moreover, findings in social
psychology also suggest that other co-ordinated body motions also
exist when people are in an F-formation, which are not necessarily
directly related to the management of the turn-taking itself (e.g. si-
multaneous shifts of posture [17] or behavioural mimicry [3]). It is
also important to highlight that while a conversing group might im-
ply a cluster of multiple F-formations who are spatially close, here,
the definition refers more specifically to one conversation happening
for which all members of the F-formation are equally engaged as
either the speaker(s) or listener(s).

Novel Contributions.
The contributions of this paper are: (i) we demonstrate method

of using accelerometers alone to model and automatically detect
instantaneous conversation-related social actions online, through
a systematic analysis of streaming accelerometer readings, which
out-performs the state of the art [13]; (ii) We show that the syn-
chronicity as expressed through the mutual information between
these social actions is indicative of whether people are part of the
same F-formation, (iii) we show that even using imperfect recogni-
tion of such social actions results in good F-formation recognition,
while direct computation of the mutual information between peo-
ple’s raw acceleration utterly fails to do the same.

2. RELATED WORK
2.1 Activity and Action Recognition

The majority of related work on human activity recognition using
accelerometers have tended to concentrate on non-social activities
such as fall detection [7, 33], ordinary daily activities including
walking, running, sitting, climbing the stairs [19], daily household
activities including eating or drinking, vacuuming or scrubbing,
lying down [1], or to identify modes of transport taken [31]. Classi-
fying these types of activities is possible with excellent performance.
However, the aim of this paper is to measure behaviour for which
the link between the activity and the behaviour is not as direct. That
is, the movements associated with speaking for example, are physi-
cal manifestations of the cognitive process of speaking but do not
directly produce the spoken behaviour [17].

Matic et al. also used acceleration to detect speaking status by
strapping an accelerometer to the chest so that vibrations directly
caused by speaking could be detected [23]. This essentially limited
the possibility to interpret the verbal content of a conversation but
would be much less practical to implement in a crowded social set-
ting. In [13] an initial study was carried out to see if socially relevant
actions during conversations such as speaking and laughing could
be detected. In those experiments, the class data was pre-segmented
and a fixed window size was used. We improved upon that work by
demonstrating the feasibility of measuring the same behaviours from
continuous accelerometer data and parameters trained on each class
explicitly, leading to significant improvements in the performance.
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2.2 Detecting Conversing Groups
There has been much prior research on analysing and estimat-

ing aspects of social behaviour using wearable sensors on both the
small group scale with 2-6 people in a room [18, 10] and on larger
scale, with 50 - 100 participants [9]. To our knowledge, most auto-
mated analysis of face-to-face scenarios have been carried out on
small groups (2-6 people [18, 10]). Studies which have analysed
larger groups of people (10-200) have used sensors such as blue-
tooth and/or infrared (IR) to detect when people are close together,
as a proxy for interaction [21, 26, 9, 4, 11], or audio [32] However,
these studies were often carried out over weeks, sometimes also
exploiting other communication methods such as call frequency.
[26, 9]. Moreover, it is expected that at any moment in time, the
number of detected neighbours is in general far fewer than would
occur in crowded situations. More systematic evaluation of con-
versation detection and the level of formality of the conversation
was analysed by Matic et al. using both proximity and orientation
sensors from a mobile phone [24]. Again, experiments were carried
out in uncrowded situations.

Wearable sensors have been used as a means of supporting coop-
erative activities in working environments [29, 26], analysing the
diffusion of political opinions or ideas [21], influence and centrality
[4], or affiliation [12] amongst many others. In contrast, we focus on
the detection of immediate aspects of interpersonal communication
in crowded situations, at shorter timescales (and therefore relying on
fewer measurements,) that require a reasonable estimation accuracy.

One of the most similar prior works that measured social be-
haviour using wearable sensors was proposed by Choudhury [4].
She carried out initial experiments to detect social interaction us-
ing infrared sensors attached to a “sociometer” device. This was
worn on the shoulder blade of each participant for around 10 days.
Experimental results showed that using infrared sensors as a proxy
for interaction was quite inaccurate when trying to measure spon-
taneous interactions over short time scales, but performed better
when accumulated over 10 days or more. Choudhury also obtained
significantly better results at shorter time scales of one minute, but
this was using the recorded audio signal from each device. In these
experiments, the behaviour of 25 individuals was recorded, as a
result of 3 different recorded time periods.

The primary distinguishing factor of our work is that the meth-
ods we propose are intended to address the specific challenges
of analysing social behaviour in crowded and noisy environments,
whereas most prior work, with the exception of Gips [11], have op-
erated in less densely crowded environments. Gips [11] built on the
work of Choudhury by using accelerometer readings to measure in-
teractions using the “Uberbadge” [27]. Similar to the “sociometer”,
the “Uberbadge” contains an accelerometer and an IR transceiver
but the badge was hung around the neck. Gips used accelerometer
readings to extract the mutual information in the motion energy
(MIME) to find interacting participants, rather than using an audio
signal. Such a feature can find synchronous behaviour but could also
find erroneous occurrences, for example if one person is following
another down a corridor, or they are queuing. Unfortunately, while
Gips provided an analysis of the extracted features with factors such
as the affiliation of the participants at an event, no performance
evaluation was made. So it is not clear how well the MIME feature
performed on the various data sets that were tested on.

Olguin et al. [26] measured the behaviour of 22 colleagues in
a company over one month using their “sociometric badge”. The
badge contained a number of different sensors and devices that are
also used in conjunction with sensors within the wearer’s mobile
phone. For detecting and measuring social interactions, bluetooth
was used to communicate between the wearers’ mobile phone and

Figure 2: Flow diagram showing the experiments that were car-
ried out in the rest of the paper.

the devices of others who were probably within an appropriate
distance for conversation. In addition, a microphone for measuring
non-verbal cues related to excitement and interest, and infrared (IR)
sensors with a 30 degrees and 1m range of sensitivity for measuring
interaction were also used. This badge was worn around the neck.
The IR sensor readings were used as a proxy for interaction but was
not evaluated explicitly during these experiments. Finally, an audio
signal recorded from the badge was used to detect when someone
was speaking. For a more detailed overview of existing methods that
use wearable sensors for analysing social behaviour, we refer the
reader to the recent book chapter by Olguin et al. [25].

In summary, all prior work listed above has tended to use IR sen-
sors as a proxy for interaction, and used microphones for detecting
when people are speaking. In contrast, we propose to do both using
just one tri-axial accelerometer per person. Moreover, we explicitly
address the problem of detecting F-formations [17] to ensure a clear
labelling strategy in the presence of complex ambiguous data. So
far, this has also not been addressed by existing research work.

3. OUR APPROACH
Figure 2 shows a flow diagram of our experiments. First the data

is described in Section 4.1. Then in Section 4.2 the annotations for
both social actions and F-formations will be described. Section 5
describes the methodology, experiments and resuts for estimating
social actions. Section 6 describes how the social action labels are
used to detect F-formations, the experimental procedure, and finally
discusses the results. We conclude in Section 7.

4. DATA
4.1 The Scenario

For our experiments, we use the data presented in Hung et al. [13]
where a social event was organised to obtain natural behaviour and in
a dense crowded environment. A total of 32 student volunteers from
different universities took part in the data collection. The volunteers
were briefed that the aim of the event was to play a quiz game
in teams, where the quiz was designed to span a wide variety of
topics so that only diverse teams could be competitive. To form
competitive teams, the volunteers had to (i) meet new people from
different backgrounds, and (ii) form teams of four people to play
the quiz. To increase motivation, prises (personal music players and
book vouchers) were awarded to the top 3 winning teams.

Each participant wore a sensor pack hung around the neck, which
contained a triaxial accelerometer, proximity sensor, and an indoor
positioning device. The proximity and position information was not
used in these experiments though investigating the combination of
such modalities as well as the trade-offs are left for feature work.
12 wireless microphones were randomly distributed amongst the
participants and three overhead fish-eye cameras recorded the ex-
perimental area (5m × 6m). All participants were requested to stay
within this marked area during the recording. Both audio and video
data was used only to collect ground truth labels for training the
classifiers. An example snapshot of the scene is shown in Figure 3.

Unfortunately, of the 12 subjects wearing microphones, only 10
had accelerometer data due to a firmware bug. The behaviour of
these subjects was already annotated every 2s for the actions: speak-
ing, laughing, gesturing (either hand or head), stepping (or walking)
and drinking. An additional 17 subjects wore working accelerom-

86



Figure 3: Overhead snapshot of the scenario used in our data.

eters but wore no microphone and so no ground truth annotations
were recorded for these people. We carried out experiment with both
fully annotated social action data (10 person data), and the partially
annotated social action data 26 person data.

4.2 Data Annotation
We used the 10 minute mingling part of the event as annotated

by Hung et al. [13] for which annotations of social actions were
already available. We extended the work of Hung et al. [13] by man-
ually annotating for F-formations. The F-formations were annotated
as follows. This involved manually associating each person in the
video with their corresponding sensor readings and then labelling
the social actions appropriately. The same 10 minute segment for all
32 subjects was annotated every 2s, depending on whether people
were in the same F-formation or not, leading to 300 time frames
of annotated data. Unfortunately only 26 subjects had working ac-
celerometer data. Annotating those with missing data was important
for understanding the affect that these people might have on the
behaviour of those with working accelerometers.

5. ESTIMATING SOCIAL ACTIONS
5.1 Method

Similar to Hung et al. [13], we extract spectral features from the ac-
celerometer readings and evaluate how well a Hidden Markov Model
(HMM, [30]) and random forests (RF,[2]) models these. Unlike the
work of Hung et al. [13], who attempted to label pre-segmented data
sequences as corresponding to an action or not, in this work, we
perform segmentation and classification simultaneously. These tasks
are different, but they are clearly related: we can use an HMM to
solve both cases, the difference is in the meaning of the states: in
[13], the states of the HMM model different aspects of an action,
such as its onset or final phase. The optimal number of states is,
therefore, related to the action to be recognised, and not intrinsi-
cally limited. In this work, there are only two states: whether the
action is being performed in the current time slot or not. This task is
clearly more challenging, as the model needs to recognise both on
the segment boundaries and the corresponding actions.

We have, therefore, modified the earlier approach by modelling
the emission probabilities of the “action” and “non-action” states
with mixtures of Gaussians instead of single Gaussians. Whereas the
complex distribution of the observations was handled by many states
in “action” and “non-action” HMMs, in this work the complexity is
handled by the mixture elements within the “action” and “non-action”
states of a single HMM. The resulting model is equally powerful
in terms of its capacity to model the complex distributions of the
observations, but is slightly less powerful in its capacity to model the
transitions between parts of an action. For example, if we imagine
that the action of speaking consists of an onset, varying behaviours

Table 1: Summary of social action estimation performance us-
ing continuous data. (see text for details)

HMM-based

Action Class length elem. Prec. Rec. F1 Acc.Prop. (s)
Gesturing 0.67 5 1 0.70 0.62 0.66 0.67
Stepping 0.09 5 3 0.32 0.28 0.30 0.85
Drinking 0.05 2.5 1 0.20 0.19 0.19 0.88
Laughing 0.03 3.5 2 0 0 0 0.97
Speaking 0.42 3.5 2 0.85 0.84 .84 0.50

Random-forest-based

Action Class length Trees Prec. Rec. F1 Acc.Prop. (s)
Gesturing 0.67 5 500 0.58 0.56 0.57 0.83
Stepping 0.09 5 500 0.54 0.53 0.53 0.91
Drinking 0.05 5 1000 0.43 0.43 0.43 0.95
Laughing 0.03 5 1000 0.23 0.24 0.23 0.96
Speaking 0.42 5 500 0.69 0.68 0.69 0.76

during speech, and termination, the current model is oblivious to the
order of these phases even though it correctly models each.

As the expressiveness of the transition model decreases, the ques-
tion arises whether a standard classifier, without transition model,
is not more suitable. To test this, we have compared the HMM’s
performance to a powerful ensemble method, random forests [2],
trained on the individual time slices.

5.2 Results
We performed our experiments on the accelerometer readings of

26 participants from [13]. We replicated the feature extraction of
Hung et al., by processing the signal from the three-dimensional
acceleration readings by computing a Discrete Fourier Transform
of the acceleration along each dimension individually, and used log-
spaced bins of varying size, so as to obtain a higher resolution for
the low frequencies.

Different actions have varying degrees of complexity and different
durations. It makes sense, therefore, to use different numbers of
mixture elements and different lengths for the windows used for
feature extraction (for the HMM), and different numbers of trees for
the random forests. Table 1 lists the number of mixture elements and
the window lengths in seconds used for the different gestures (fourth
and third columns respectively). These numbers were chosen based
on cross-validated selection using pre-segmented data. The table
further lists the precision, recall, F1 measure and accuracy (columns
five to eight). The listed parameters in columns three and four were
trained on cross-validated pre-segmented data.

From these results, we note that the HMM performs better at
recognising gesturing and speaking, which are longer-duration ac-
tions in our dataset, while the random forest is better at recognising
stepping, drinking and laughing. in this work we focus on the anal-
ysis of F-formations from the obtained actions, but in practice, of
course, there is no problem with choosing the best tool for the task
and applying different models for the different actions.

Notice how stepping, drinking and laughing are not recognised
well at all by the HMM, although the random forest performs quite
a bit better despite the class imbalance. In particular, stepping is re-
markably badly recognised. This is due to the definition of stepping
used in the data, which can consist both of walking or stepping, but
also of switching one’s weight from one foot to another during a
conversation. Although relevant, this form of body language is very
challenging to detect with our current model. Drinking and laughing
suffer from the small dataset and few positive examples. Table 1
shows the performance, allowing up to a 2 seconds shift of the an-
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Figure 4: Matrices showing the average mutual information for
each pair of social actions for people who were annotated to be
in the same F-formation (left) and not in the same F-formation
(right) over a 20s window.

notations either way. The resulting figures show that gesturing and
speaking are segmented and recognised much better than random
but that, as expected from the few positive examples of these classes,
stepping, drinking and laughing perform badly.

6. IDENTIFYING PAIRWISE
F-FORMATION MEMBERSHIP

6.1 Method
To understand more about the problem of automatically iden-

tifying F-formations, we hypothesised that people have strongly
co-ordinated behaviour during conversations that would highlight
the moments when they were conversing compared to times when
they are not. Furthermore, motivated from findings in social psy-
chology[17], we hypothesise that in addition to the co-ordination
of speaking turns, other socially relevant behaviours could also be
indicative of being in an F-formation. Moreover, when the accuracy
in estimating speaking status is reduced, the use of other socially
relevant conversational behaviours could enhance the performance.

To verify this hypothesis, we adjusted the method of Wyatt et al.
[32], who applied this method on audio data. Mutual information is
calculated over a window for both social action streams. The pair
are labelled as being in an F-formation using a threshold on the
mutual information value (trained on separate data). So pairs of
people whose binary streams yield a higher mutual information are
considered to be more likely to be talking together.

To illustrate how each social action can indicate who is in an
F-formation with whom, we plotted the mean mutual information
per ground-truth-labelled action pair, differentiated by whether they
were in the same F-formation or not. Figure 4 shows a colour-
coded matrix of the within-group and without-group mean mutual
information per pair of social actions. Light colours indicate where
pairs of actions have higher mean mutual information. The left half
of the figure shows the mean mutual information of actions for
people in the same F-formation and the right half shows the same
information for people in different F-formations. We see that overall,
the mean mutual information between actions of pairs of people in
the same group tend to be higher than those of people in different
groups. As expected, speaking from both people yields the highest
mean mutual information. However, it is worth highlighting that
other action pairs also have higher mutual information within the
same F-formation. Note that these results highlight patterns for the
dyads that exist in this labelled data.

Interestingly, we also see that pairwise speaking activity for both
participants also yields the highest mean mutual information for
people who are not in the same F-formation. In fact, the mutual
information for two speakers is almost twice as high as the next

Table 2: F-formation estimation accuracy using the mean MI.
GT: ground truth, RF: Random forest.

Win. Size (s) 5s 10s 20s 40s 80s
10 person GT 0.51 0.59 0.62 0.62 0.57
10 person RF 0.51 0.56 0.63 0.64 0.60
26 person RF 0.49 0.50 0.50 0.50 0.50

ranked action pairs (speaking and gesturing) in the in-group case.
This suggests that although speaking is a key characteristic of people
being in a conversation together, other social actions also contribute
to the dynamics of activities that are indicative of F-formations.

From the analysis shown in Figure 4, we chose a simple late
fusion approach by taking the mean mutual information for every
possible action pair in a given window.

6.2 Experimental Results
To experimentally validate the F-formation detection, the perfor-

mance was cross-validated by a leave-one-pair out approach. For a
given pair of people and window size, the mutual information thresh-
old was trained using the labelled binary social action streams of all
other pairs of the remaining people. The threshold was selected by
finding the value that maximised the classification accuracy from
the training data. For the 10 annotated people, at any one time, there
were far fewer instances of pairs of people in the same F-formations
than in different F-formations. Therefore, to handle the significant
imbalance in the classes, the smaller class was reweighted during
training and testing. All the presented results are therefore presented
based on upsampling the smaller class to be identical in size.

6.2.1 Using Ground Truth Social Actions
To understand what the upper bound of the performance of the F-

formation detector would be, we first present results using the ground
truth labels of the social actions. Figure 5 summarises the classifi-
cation accuracy for detecting people being in the same F-formation
for different window sizes. Lighter colours indicate better perfor-
mance. In practice, the optimal window size can also be trained for,
but we wanted to analyse how differing window sizes might affect
performance when using ground truth compared to estimated social
actions.

The first thing to note is that the best accuracy of 0.65 is ob-
tained when using the mutual information of speaking activity of
both participants using a 20s window. There appears to be a peak
in performance of the speaking- speaking action pair at this win-
dow length, after which the performance decreases. This suggests
that within 20s, turn exchanges were sufficiently captured to obtain
discriminative mutual information between the two binary streams.
However, the performance of the speaking-gesturing action pair in-
creases with longer window lengths, which on further investigation
of the social action label estimates can be explained by gesturing oc-
curring more sparsely than speaking. Importantly, all the remaining
social actions, with the exception of laughing all pair with other so-
cial actions to produce F-formation estimates which are better than
the random baseline (50% classification accuracy). This may be due
to there being very few examples of laughing in the data. Moreover,
peaks in performance of different social action pairs occur at varying
window lengths, which is in keeping with the nature of some social
actions being longer than others. Overall, in line with prior work
[32], speaking status is very important for identifying conversing
groups. However, our experiments show that other social actions are
also informative of being in an F-formation but their infrequence in
the labelled data suggests that more data is needed to further investi-
gate this result. To understand how the performance might improve
by incorporating the mutual information between all social action
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Figure 5: Ground-truth social action labels: F-formation detection performance in terms of classification accuracy per action pair
using the 10 people from the fully annotated data.

Figure 6: Estimated social action labels using the random forests method: F-formation detection performance in terms of classifica-
tion accuracy per social action pair for the 10 people from the fully annotated data.

pairs. The same cross-validated experiments were carried out using
the mean mutual information of all action pairs over a given window.
The balanced classification accuracy is shown in Table 2 for the
same window sizes. In the first row, a peak classification accuracy
of 0.62 is achieved for the 20s and 40s window. This is a reduction
in performance compared to just the speaking-speaking action pair.
Given that other social action pairs can be indicative of F-formation
membership, this suggests that more complex classifiers and more
data for these other social actions are required to understand the
problem more deeply.

6.2.2 Using Estimated Social Actions

Results on the Fully Annotated 10-person Data.
Having seen what the upper bound on performance is when using

the ground truth labels, we now present the performance results
when using the social actions as estimated using the Random Forest
method as described in Section 5. We present just results with this
method since its social action estimation performance was better
than the HMMs. Again, we initially carried out tests by observing
the performance differences for different action pairs. The results
are summarised in Figure 6. If we compare the performance when
using the ground truth social action labels with the estimates from
the random forest, the performance is comparable but achieves the
best accuracy (0.64) when using a 40s window and the speaking-
speaking social action pair. Comparing this to the results using the
ground truth labels of the social actions, where the best performance
of 0.65 classification accuracy was obtained using a 20s window, we
see that significantly longer window sizes are necessary, probably
to account for the noisier estimates of the social actions. Note that
the colour coding is normalised across Figures 6, 7 and 5 for easier
comparison.

In terms of the performance when using the mean mutual in-
formation of all action pairs, the results are summarised in Table
2 again in terms of the class-balanced classification accuracy. In
the second row, the best performance (0.64) is again obtained with
a 40s window. However, now a more comparable performance of
0.63 classification accuracy is also achieved with the 20s window,
which is also quite competitive compared to the results when using
the ground truth labels. This suggests that when the social action
estimates are more noisy, then exploiting other social action streams
becomes more useful. Using the mean MI values across all social
action pairs leads to an equal or slight increase in performance over
any single action pair for all window sizes. This suggests again that
considering other social action pairs is beneficial.

Table 3: Frequency of occurrence (in seconds) of different
group sizes for both data sets.

1 2 3 4 5
all 32 persons 1528 2624 2210 1300 126
26-person data 1694 3150 1736 874 10
10-person data 2848 1576 0 0 0

Results on the 26 person data.
We performed F-formation estimation on the full set of people

(with working sensor readings) during the same 10 minute inter-
val. Since not everyone was wearing a microphone, this data was
generated from the 10-person training data only. The results for
each action pair and using the mean of the MI are shown in Figure
7 and Table 2 respectively. In both cases, the performance of the
F-formation detection drops to below the random baseline. There
are a number of possible explanations for this.

First, the social action performance could be worse given that the
size of the training data is significantly less than the test set. Second,
a deeper analysis of the data reveals very different distributions of
each group size instance in the 10person and 26 person data (see
Table 3). Note that the table also shows statistics for those who were
not labelled to be in any F-formation and are therefore singletons.

As shown in Table 3, the distribution of group sizes was substan-
tially different. It is also likely that in the 10-person data, many of
the singletons and some of the dyads were people talking others
who were not wearing microphones and therefore not annotated for
social actions. Likewise in the 26-person data, only the data from
those who had accelerometer readings were used to generate the
distribution. By comparing with the statistics for all 32 subjects,
we see that there were deviations between the true and estimated
F-formation sizes. Note that these differences do not affect the F-
formation estimation performance because it was trained on pairwise
mutual information values. However, there are clearly more groups
of size 3-5 and therefore estimating differing F-formation sizes is a
much more challenging task. It is likely that the mutual information
between dyads is much higher because both have to be constantly
actively involved in the conversation. On the other hand, for smaller
group sizes, the behaviour is perhaps less strongly co-ordinated.

We investigated further by computing the accuracy per group size,
as shown in Figure 8 for 40s and 80s window lengths. We can see
that above random performance is mostly concentrated in the groups
of size 2. This further suggests that different group sizes should
be treated differently during training and testing and indeed could
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Figure 7: F-formation detection performance in terms of classification accuracy per social action pair, using action pairs estimated
with random forests for all 26 people from the 10 minute interval annotated for F-Formations.

Figure 8: F-formation detection performance in terms of class balanced classification accuracy per action pair in different group
sizes. Posweight shows the ratio of the number of negative to positive data points for each corresponding group size.

depend on certain action pairs more than others.

6.2.3 Ground Truth vs. Estimated Social Actions
On comparing the performance of the F-formation detection using

ground truth compared to estimated labels, in Figures 5 and 6, a gen-
eral decrease in performance is observed except for the gesturing-
gesturing social action pair at the 40s window length. This shows
that each of the defined social actions have a salient and measurable
meaning in the co-ordination of behaviour in F-formations. The
exception is due to errors in the social action estimate: closer inspec-
tion of the estimated social actions revealed that gesturing is most
often mistaken for speaking, which is the single most informative
action in the data.

When using the true labelled social actions, taking the mean mu-
tual information did not improve the performance over considering
the mutual information of any individual action pair. In comparison,
taking the mean mutual information tended to improve the perfor-
mance of the F-formation detection using estimated social actions.
Also when using both the estimated labels, taking the mean of the
mutual information of all social action pairs led a reduced latency
in obtaining above close to the best performance. This suggests
that in the presence of noisy labels, relying on multiple action pairs
rather than a single one to improve accuracy and latency is a sensi-
ble choice. It also suggests that combining multiple action pairs at
shorter time scales can provide stronger evidence for F-formations.

6.3 Social Actions vs. Motion
It is not clear whether it is purely the co-ordination of motion

rather than specific social actions that indicate whether people are
in an F-formation or not. We carried out additional experiments
where we calculated the mutual information on the raw tri-axial
motion signal per person. Since the mutual information is sensitive

Table 4: F-formation accuracy from raw acceleration
Window Size (s.) 10-person data 26-person data

5 0.55 0.52
10 0.56 0.51
20 0.56 0.51
40 0.55 0.50
80 0.52 0.48

to the binning choice when approximating a probability distribution,
we wanted to chose a more stable method of estimating the mutual
information from continuous data. To this end, we used the imple-
mentation of the mutual information proposed by Peng et al. [28]
for both these experiments, and those with binary streams. For the
motion data, this method approximates the distribution of the data
using kernel density estimation.

We carried out the same experiments calculating the mutual in-
formation on the magnitude of the raw acceleration streams. The
results are shown in Table 4. Here we see that for the 10-person data,
the performance does not surpass the social action approach, which
suggests that there is something salient about the social actions that
provides clear distinctions between behaviour which is relevant to
conversations, and other motion which does not. For the 26-person
data, the motion features alone do provide some discrimination,
which suggests that the reason that our social action approach did
not work is possible related to not having enough data for training
the social actions.

There are, of course, other ways of pre-processing the motion
features before calculating the mutual information for every pair.
However, more complex representations of the motion features could
have resulted indirectly in more semantically meaningful representa-
tions of the motion that would go beyond treating it as the raw signal,
thus defeating the purpose of this particular comparative study.
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7. CONCLUSIONS
In this paper, we have demonstrated that complex social behaviour

related to conversations can be estimated using just a single body-
worn accelerometer. The goal of the paper was to understand how
the co-ordinated body movements can be indicative of being in a con-
versation. Thus far, it has been used to augment audio-based sensing
of conversations in less crowded and acoustically clean situations.
First, we have shown improved social action estimation performance
on non pre-segmented data over prior work [13]. Second, we have
also shown that it is possible to detect F-formations by measuring
the co-ordination of automatically extracted conversationally rele-
vant behaviours. Importantly, we have highlighted that using noisy
estimates of speaking activity alone to detect F-formations is infor-
mative but that taking into account other conversationally related
behaviours leads to an improved performance. A best classification
accuracy of 64% was achieved for the speaking-speaking social
action pair where mutual information between these streams was
accumulated over a 40s window for the fully annotated 10-person
data. Combining multiple social actions to estimate F-formation
membership showed slightly improved results and warrants further
investigation. However, when considering the 26-person data, over-
all F-formation estimation performance dropped below the random
baseline. Further investigation showed that this was because more
different group sizes were taken into account than in the 10-person
data where only dyads were present. Future work will investigate
how to develop methods that take into account group size.
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