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Abstract. In this paper, we propose a method to combine unsuper-
vised and semi-supervised learning (SSL) into a system that is able to
adaptively learn objects in a given environment with very little user in-
teraction. The main idea of our approach is that clustering methods can
help to reduce the number of required label queries from user interac-
tion, and at the same time provide the potential to select useful data
to learn from. In contrast to standard methods, we train our classifier
only on data from the actual environment and only if the clustering gives
enough evidence that the data is relevant. We apply our method to the
problem of object detection in indoor environments, for which we use a
region-of-interest detector before learning. In experiments we show that
our adaptive SSL method can outperform the standard non-adaptive
supervised approach on an indoor office data set.
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1 Introduction

Current machine perception systems often rely on their capabilities to automat-
ically learn a mapping from the set of potential observations to a set of semantic
annotations, for example class labels from a natural language. The biggest chal-
lenges for the employed learning algorithms are the large amount of labelled data
they usually require, and their potential to adapt to new, unseen environments
and situations. In many applications, and particularly in mobile robotics, this
adaptability is an important requirement, because it is impossible to anticipate
all situations that the robot might encounter before deployment. Therefore, we
investigate learning mechanisms that are capable of adapting to new observa-
tions by updating their internal representation as new information arrives. This
implies that the learning step is performed during operation of the system and
not beforehand, and that the data used for training is acquired online. However,
the main question is: what are good data to train on? A good answer to this
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question directly leads to a shorter training time and in a reduced amount of
required human data annotations.

In this paper, we address this question using a simple, but effective idea:
Before asking the human supervisor for a semantic label, we group the observed
data into clusters using unsupervised learning. Then, our algorithm queries one
common label for each cluster from the supervisor and uses the so obtained
training data in a semi-supervised learning step. This approach has two major
advantages: first, it further reduces the amount of human intervention signifi-
cantly by asking labels for multiple instances at the same time. And second, it
gives us the potential to pre-select interesting data to train on, for example by
asking labels only for clusters that are significantly represented. We apply our
method to the problem of object detection in indoor office environments, and we
show in experiments that this adaptive way of learning can outperform the stan-
dard approach, where a purely supervised classifier is learned before observing
the actual test data.

2 Related Work

Our work is mostly related to the area of semi-supervised learning (SSL) and
transductive learning methods, which have become very popular in the last
decade. A good overview of this field is given by Zhu [1,2], who also proposed
a graph-based SSL method named Label Propagation. Other methods include
the sparse Gaussian Process classifier with null category noise model [3], semi-
supervised boosting [4] and the transductive Support Vector Machine (tSVM)
[5]. In our work, we also use unsupervised learning as in [6] and combine it with
a tSVM to reduce the required interaction with the human supervisor even fur-
ther. Example applications of SSL in computer vision include image classification
from labelled and unlabelled, but tagged images [7], object recognition [8], and
video segmentation [9].

Furthermore, our work is also related to the area of active learning, because
it involves a user interaction step, for which queries for class labels are actively
generated. A good overview on the active learning literature is given by Settles
[10]. One interesting example of active learning is the work of Kapoor et al.
[11] on object categorization using a GP classifier (GPC), where data points
possessing large uncertainty (using posterior mean and variance) are queried for
labels and used to improve the classification. Triebel et al. [12] use active learning
for semantic mapping where a sparse GP classifier actively learns to distinguish
traffic lights from background. In contrast to classical active learning methods,
our approach chooses the data to be asked for labelling based on a relevance
criterion rather than, e.g. based on the entropy of the underlying classifier.

3 Combined Unsupervised and Semi-Supervised Learning

Fig. 1 gives an overview of our proposed semi-supervised learning method. We
start with a sequence of input images and determine first an appropriate set of
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Fig. 1. Flow chart of our proposed system. From a sequence of images, regions of
interest are detected using super pixel segmentation and by comparing the segments
based on SIFT features. Then the resulting patches are clustered. From each cluster, a
subset of patches is used to query object labels from a human supervisor. The resulting
hand-labelled data together with some unlabelled samples is then used to train a semi-
supervised classifier.

rectangular regions of interest named patches. From these patches, we extract
SIFT features (“Scale-invariant feature transform”, [13]) and use them to define
a similarity measure between patches. Based on these similarities, we cluster the
patches using spectral clustering. Then, we select a subset of appropriate patches
from each cluster and query object labels from a human supervisor as described
below. The resulting labelled patches, together with the remaining unlabelled
ones are then passed into a multi-class transductive SVM, which then returns
predicted labels for the unlabelled patches. In the following sections we describe
each step in more detail and give motivations for our algorithm design.

3.1 Region of Interest Detection

Object detection for a given image of a scene is much harder than pure object
recognition, because it is not even known to the algorithm if the object to be
recognized exists in the scene and where it is. The common approach to this
problem is to determine small sub-windows within the image which potentially
contain the object(s) to be classified. In the simplest case, these so-called regions
of interest (ROI) are obtained using a sliding-window approach. However, to re-
duce the number of potential ROIs, we use a different method: Given an image
sequence, we first compute a superpixel segmentation for each image based on
the SLIC algorithm [14]. Then, we compute the bounding box for each segment in
every image. For each such resulting candidate patch, we extract SIFT features
[13] and compare the patches across the image sequence using a similarity mea-
sure s. The motivation for the choice of SIFT descriptor is their high expressive
power and their ability to find good matches even under changes of illumination,
orientation and scale. In our application, object instances do not vary much in
color or texture, which is an ideal condition for the SIFT descriptor. Of course,
in a more general setting, where the appearance between the objects of a class
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Fig. 2. Example result of our ROI detector. From left to right: 1. Original image 2.
SLIC superpixels with boundaries in red, 3. Bounding boxes of the super pixels, 4.
Detected ROIs after threshold.

may vary more, other descriptors, for example based on the geometry may be
more appropriate.

To compute the similarity measure s, we first define a distance function d
between two patches A and B as:

d(A,B) =
1

n

n∑
i=1

‖x̃i − ỹi‖2 , (1)

where n is the number of matches found by the SIFT algorithm and i iterates over
all these matches. The vectors x̃i and ỹi denote the 128-dimensional descriptor
values computed at the key points found by the SIFT method in patches A and
B, respectively. From this distance measure, we define the similarity s between
two patches as:

s(A,B) = 1− d(A,B)

max
A′,B′

d(A′, B′)
, (2)

thus, s gives values between 0 and 1, where 1 corresponds to maximal similar-
ity. To find patches that contain potentially interesting objects, we compute a
similarity score p for patch A as follows:

p(A) =
∑
B 6=A

s(A,B), (3)

i.e. the score is defined by the sum of similarities to all other patches. The intu-
ition here is that patches that are very similar to many others more likely contain
objects of interest, because they give evidence that there are many instances of
the same object class. Note that our formulation implicitly deals with the prob-
lem that background patches containing walls, the floor, etc., despite occurring
very often will not give a high score, because their appearance is usually much
more uniform, which means that much less SIFT key points are detected on
them.

Using these score values, an ROI is then detected as the patches A for which
p(A) exceeds the average score over an entire image. This simple statistical
method finds patches that stick out in terms of their similarities and has the
advantage that it does not require to introduce a threshold parameter. In our
experiments, this gave good results (see Fig. 2 for an example sequence of our
detector), but of course other methods could be used here.
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3.2 Clustering of Patches

The main contribution of our work is the idea of using unsupervised learning
before employing a semi-supervised method for classification. The motivation
of this approach is two-fold: first, the number of required user interactions, i.e.
label queries, is further reduced compared to standard semi-supervised learning,
because we query only one common label for an entire group (cluster) of data
instances. And second, the clustering step gives us the opportunity to pre-select
interesting data to train on, because typically some clusters can be easily iden-
tified as more relevant for the learning task based on simple characteristics such
as cluster size or similarities of elements within a cluster. The intuition here
is that only those data instances should be learned by the classifier, for which
there is enough evidence that they correspond to a meaningful object class. For
example, in an office environment, usually there are many instances of classes
like telephone, chair or monitor, and the mere fact that there are many very
similar instances makes them highly relevant, for example for a mobile robotic
system operating in the environment. In contrast, in a home environment, there
might be other types of relevant objects, and our approach particularly aims at
finding such relevant classes adaptively.

To perform the clustering step, we use the same SIFT descriptors computed
earlier for each patch and rely on the same similarity measure s to cluster the
patches. We ran experiments with two different standard clustering methods:
k-means clustering and spectral clustering. Both methods have been used very
successfully in many different kinds of applications, and we found that the dif-
ference in performance is not very substantial. We evaluated both methods on
our data using the V-measure [15], which is defined as the harmonic mean of
homogeneity and completeness of the clustering algorithm. In these experiments,
the spectral clustering was slightly better, and it has the further advantage that
it does not necessarily require the number of clusters specified as a parameter.
The reason is that it is based on the eigen decomposition of the graph Laplacian
of the data, and that a method called the eigen gap heuristic can be used to
determine a good value for the number of clusters. For more details on spectral
clustering, we refer to the work of Luxburg [16].

3.3 Querying Object Labels

The next step in our proposed method is to receive class label information from
a human supervisor for the patches that have been clustered beforehand. To
perform this label query, some important considerations need to be taken into
account: On one side, the algorithm should ask the user as few times as possible
to give a label input, because this is one of the main motivations of this work.
Thus, we want to ask only once for each cluster. On the other side, we need to
make sure that the data we provide as training samples to the semi-supervised
learning method is as pure as possible, i.e. ideally there should be no instances
of different objects labelled by the human with the same label. Unfortunately,
no clustering algorithm can guarantee complete purity, neglecting of course the
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trivial clustering that assigns every data point to its own cluster. Therefore, we
propose to use a quality measure q for all patches within a cluster, which is based
on the similarities s computed earlier. Concretely, for every patch A of a given
cluster C, we compute q as the sum of similarities within the cluster :

q(A) =
∑
B∈C

s(A,B). (4)

Note that this is different from the scores computed in Eq. (3), because here, our
goal is to find the best cluster representatives. After computing the q-values, we
sort all elements within a cluster in descending order of q and ask one common
label from the user for the first m such elements of each cluster. This policy
gives a good trade-off between the two opposing objectives of generating few
label queries and providing pure training data. Of course, this method does not
guarantee that there are no instances of different object classes that receive the
same label from the supervisor. However, from our experience, the number of
cases where queried data points are inconsistent can be reduced substantially
using this method.

To illustrate this step, Fig. 3 shows an example result of the clustering step,
where each row corresponds to a different cluster and only the first 3 elements
according to the quality measure q are shown. As we can see, in two out of
four cases the first three cluster elements only contain objects of the same class,
and in the other two cases the mistakes made by the algorithm are completely
comprehensible. We also note that the clustering result yields more clusters than
there are actual classes, i.e. we have an over-clustering. This is only a problem in
the sense that it requires the user to give more class labels than actually needed,
but this effect was only minor in our experiments.

3.4 Training a Classifier

As a final step in our approach, we use the labelled data obtained from the
previous step to learn a classifier for the objects discovered in the environment.
Here, we considered three different strategies. First, we investigated the use of
a standard supervised learning method using a linear Support Vector Machine
(SVM). Then, we evaluated two semi-supervised learning techniques, where the
first was a simple nearest neighbour rule, i.e. each unlabelled sample was assigned
the label of the closest labelled sample according to our similarity measure. And
finally, we used a transductive SVM [5] with an RBF kernel. Thus, in addition
to the labelled training set D of size l, the algorithm is also given an unlabelled
set D? = {x?

i ∈ Rp}ki=1 of test examples to be classified. Formally, a transductive
SVM is defined by the following primal optimization problem:

Find (y?
1, y?

2, . . . , y?
n, w, b) so that

min
1

2
‖w‖2

subject to yi[w · xi − b] ≥ 1, y?j [w · x?
j − b] ≥ 1, (5)

y?j ∈ {−1, 1} ∀i = 1, . . . l, ∀j = 1, . . . , k
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Fig. 3. Examples of clusters obtained from the clustering algorithm (every row cor-
responds to a different cluster). For each cluster, we show the first three elements
according to the quality measure defined in (4).

where (xi,yi) are the training examples, y?
i are the predicted labels for the

unlabelled test example and w is the weight vector. This means, that the trans-
ductive SVM learns from both the labelled and the unlabelled examples, and it
returns label predictions for the unlabelled ones. In that sense, the training and
the inference step are contained within the same common procedure.

From these three methods the worst in our experiments was the standard
supervised SVM, and we did not consider this further. The highest classification
performance was obtained with the transductive SVM, and we give more details
in the experimental section. As feature vectors for training, we compute for
every patch the Hierarchical Matching Pursuit (HMP) descriptor introduced
by Bo et al. [17]. The HMP features are calculated in a multi-layer process
where each layer is computed on a different scale, containing the same three
steps: Matching Pursuit, Pyramid Max Pooling and Contrast Normalization.
The key element in this process is the Matching Pursuit step, which is based
on a sparse coding algorithm known as K-SVD. Given a set of h-dimensional
observations Y = [y1, ..., yn] ∈ Rh×n (image patches in our case), K-SVD learns
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a dictionary D = [d1, ..., dn] ∈ Rh×m, and an associate sparse code matrix
X = [x1, ..., xn] ∈ Rm×n by minimizing the following reconstruction error,

min
xi

‖yi −Dxi‖2 s.t. ‖xi‖0 ≤ K, (6)

where xi are the columns of X, the zero-norm ‖xi‖0 counts the non-zero entries
in the sparse code xi, and K is the sparsity level, which bounds the number of
the non-zero entries. The Matching Pursuit step finds an approximate solution
to the optimization problem mentioned above using a greedy approach. Pyramid
Max Pooling is a non-linear operator that generates higher level representations
from sparse codes of local patches which are spatially close. And Contrast Nor-
malization turns out to be essential for good recognition performance, since the
magnitude of sparse codes varies over a wide range due to local variations in
illumination and foreground-background contrast. Bo et al. [17] used a linear
SVM in combination with HMP features and reported very good classification
results. We verified these results using data from the Caltech 101 benchmark,
and we show them in the results section. From this, we conclude that HMP
features exhibit a high amount of expressiveness, because they give very good
classification results for a comparably simple classifier such as the linear SVM.

In practice, the use of HMP features consists of two phases: one where the
dictionaries are learned from some given training data, and one where feature
vectors are computed for new test data based on the sparse codes with respect
to the learned dictionaries. While the first phase can require huge computation
time, as it usually uses a large training data set, the online phase is comparably
fast, as it only requires the computation of a sparse representation for a given
dictionary. We note however, that the dictionary learning step is completely
unsupervised, as it does not require any human-labelled data.

4 Experiments and Results

To measure the performance of our approach, we performed several experiments.
First, we evaluated our method to detect regions of interest. Then, we evaluated
two different semi-supervised learning methods on a benchmark and on our own
data. And finally, we verified experimentally the benefits of using our adaptive,
semi-supervised learning method over a standard non-adaptive supervised strat-
egy. More details about all experiments are given in the following.

4.1 Evaluating the ROI Detector

As mentioned above, our ROI detector finds patches that occur often with high
similarity across images. Therefore, to assess this method quantitatively, we first
created ground truth data for the objects that occurred most frequently in our
data. Concretely, we labelled those ROIs as correct detections, which contained
chairs, monitors or telephones. Results on 7 different images in terms of precision
and recall are given in table 1. We see that our detector tends to find more
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Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7

Actual ROIs 2 3 2 1 1 2 2

Predicted ROIs 4 4 2 3 3 4 4

Recall 1 0.67 1 1 1 1 1

Precision 0.5 0.5 1 0.33 0.33 0.5 0.5

Table 1. Evaluation of the ROI detector on 7 input images. While the precision is
comparably low, recall is good, which is the main purpose of this step.

ROIs than there actually are, and the recall is much better than the precision.
However, for ROI detection we are actually more interested in recall than in
precision, because missing a candidate for classification is worse than reporting
a background patch as a ROI, as the latter can be handled by the classifier.

For a qualitative evaluation, we show an example result of the ROI detector
in Fig. 4. As we can see here, the detector found the two regions of actual interest,
i.e. the chair and the monitor, and it only returned one false positive.

4.2 Comparison of Adaptive Semi-Supervised Learning and
Standard Supervised Learning

To measure the performance of our adaptive semi-supervised learning method,
we ran experiments on a subset of the standard benchmark data set Caltech
101, and on our own data. The subset consisted of 10 classes (see Fig. 5), for the
Caltech 101 and 3 classes for our data. For both experiments, we used dictionar-
ies for the HMP features that were learned from 10 images per class from the
benchmark set. For the Caltech 101 we did not employ the ROI detector, be-
cause these images already contain one major object and not much background.
Thus, we only clustered the data, computed HMP features for each image and
trained a semi-supervised learner on a mixture of labeled and unlabeled images,
where the labels were obtained from querying the best 3 representatives of each
cluster. The results for the k-nn method and the transductive SVM with RBF
kernel are given in the left column of Table 2. As we can see, the transductive
SVM performs much better than the k-nn approach, and the final accuracy is

Fig. 4. Example result of our ROI detector. The ground-truth ROIs are shown on the
left and the predicted ROIs on the right.
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Fig. 5. Examples from each of the 10 classes in the Caltech 101 data set which were
used for the experiments.

comparably high, given that only very few data samples used for training were
actually labeled.

The same conclusion we can draw for our indoor office data set (see right
column of Table 2). Here, we used 25 ROIs for evaluation, consisting of 6 chairs,
13 monitors and 6 telephones. Again, the transductive SVM performs better than
the naive k-nn approach. Also, it is interesting to see that supervised learning
works well when trained and tested on the same kind of data, but when tested
on data from a different environment, it may fail as in our example. To overcome
such problems our adaptive SSL method seems to be an appropriate approach.

Note that our adaptive TSVM approach gives somewhat worse results than
the standard SVM method on Caltech101. This is because the clustering step for
this data set had to be done using the HMP features and not SIFT, as for our
own data: the appearances of the objects in Caltech 101 are simply too diverse
to compare them using SIFT. However, we experienced that spectral clustering
works worse on HMP features, which means that for Caltech 101 the training
data provided to TSVM was of less quality than if we had chosen standard
supervised learning. For our evaluation, this is however of little importance, as
our method anyhow aims at adapting to a given environment with no previously
labelled data where objects of the same class are not very diverse. An application
of our method to an environment-independent, pre-labelled data set such as
Caltech101 is therefore not very meaningful.

4.3 Number of Generated Label Queries

In another experiment, we investigated the correspondence of the number of
label queries made by the algorithm and the classification accuracy. There are
two parameters that can be set: the number of clusters c and the number m of
patches per cluster, which receive a label after the query (see above). On one
side, we want to have few clusters, i.e. c should be low. However, if there are
more clusters, then the clusters are smaller and therefore purer, i.e. there are
more elements that agree on the true class label. Purer clusters means that we
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Learning method Caltech 101 Our data

standard SVM 95.25% 52.00%

adaptive k-nn SSL 55.86% 58.00%

adaptive TSVM 81.43% 88.00%

Table 2. Classification accuracy of standard SVM learning and adaptive SSL methods
on different data sets. The standard SVM was trained on a subset of Caltech 101 in
both cases. Thus, while standard supervised learning gives good results when training
and test data are similar, it can perform badly when they are dissimilar. However, our
adaptive SSL performs much better, because it queries the relevant class labels from
the data before learning the classifier. From the two considered methods, transductive
SVMs perform better than the k-nearest neighbour method.

can increase m, without assigning wrong labels to patches, thus we obtain better
training data. This relationship is shown in Fig. 6. If the number of clusters is
small, we get the best accuracy for m = 1. But for more clusters, m = 2 is better,
because by assigning the same label to the first m elements of each cluster, we
get fewer wrong labels. In general we found that having less labels for training
is better than having more, but wrong labels.

Fig. 6. Accuracy vs. number of clusters and number m (m = 1, 2, 3) of patches receiving
a label from the query. More clusters lead to a higher cluster purity. Then, higher values
of m are more effective, because the tSVM receives better training data.

5 Discussion and Conclusions

Our proposed approach for adaptive semi-supervised learning for object detec-
tion in indoor environments has two major advantages over standard super-
vised learning methods: first, it is able to select informative data to learn from
and to adapt to a given environment by only querying labels for currently ob-
served, situation-relevant data and using them to train a classifier. And second,
it reduces the number of required user interactions by making more informed
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questions about the data based on a pre-clustering step. Our experiments show
that the proposed approach can outperform standard non-adaptive supervised
learning when applied to environment-dependent data.
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References

1. X. Zhu, “Semi-supervised learning literature survey,” Computer Sciences, Univer-
sity of Wisconsin-Madison, Tech. Rep. 1530, 2005.

2. ——, “Semi-supervised learning with graphs,” Ph.D. dissertation, Carnegie Mellon
University, 2005.

3. N. D. Lawrence, J. C. Platt, and M. I. Jordan, “Extensions of the informative
vector machine,” in Proc. of the First Intern. Conf. on Deterministic and Statistical
Methods in Machine Learning. Springer-Verlag, 2004, pp. 56–87.

4. A. Saffari, C. Leistner, and H. Bischof, “Regularized multi-class semi-supervised
boosting,” in Conf. on Comp. Vision & Patt. Recog. (CVPR), 2009.

5. T. Joachims, “Transductive inference for text classification using support vector
machines,” 1999, pp. 200–209.

6. R. Triebel, R. Paul, D. Rus, and P. Newman, “Parsing outdoor scenes from
streamed 3d laser data using online clustering and incremental belief updates,”
in Robotics Track of AAAI Conference on Artificial Intelligence, 2012.

7. M. Guillaumin, J. Verbeek, and C. Schmid, “Multimodal semi-supervised learning
for image classification,” in Conf. on Comp. Vision & Patt. Recog. (CVPR), 2010.

8. S. Ebert, D. Larlus, and B. Schiele, “Extracting structures in image collections for
object recognition,” in European Conf. on Comp. Vision (ECCV), 2010.

9. I. Budvytis, V. Badrinarayanan, and R. Cipolla, “Semi-supervised video segmen-
tation using tree structured graphical models,” Trans. on Pattern Analysis and
Machine Intelligence, vol. 35, no. 11, pp. 2751–64, Nov 2013.

10. B. Settles, “Active learning literature survey,” Tech. Rep., 2010.
11. A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, “Gaussian processes for

object categorization,” Intern. Journal of Computer Vision, vol. 88, no. 2, pp.
169–188, 2010.

12. R. Triebel, H. Grimmett, R. Paul, and I. Posner, “Driven learning for driving:
How introspection improves semantic mapping,” in The International Symposium
on Robotics Research (ISRR), 2013.

13. D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. of
the Intern. Conf. on Computer Vision (ICCV), 1999, pp. 1150–1157.

14. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, “Slic superpix-
els compared to state-of-the-art superpixel methods,” Trans. on Pattern Analysis
and Machine Intelligence, vol. 34, no. 11, pp. 2274–2282, Nov 2012.

15. A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-based external
cluster evaluation measure,” in Proc. of the Joint Conf. on Empirical Methods in
Natural Language Proc. and Comp. Natural Language Learning(EMNLP-CoNLL),
2007, pp. 410–420.

16. U. Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17,
no. 4, pp. 395–416, 2007.

17. L. Bo, X. Ren, and D. Fox, “Hierarchical matching pursuit for image classification:
Architecture and fast algorithms,” in In NIPS, 2011.


	Lecture Notes in Computer Science
	Introduction
	Related Work
	Combined Unsupervised and Semi-Supervised Learning
	Region of Interest Detection
	Clustering of Patches
	Querying Object Labels
	Training a Classifier

	Experiments and Results
	Evaluating the ROI Detector
	Comparison of Adaptive Semi-Supervised Learning and Standard Supervised Learning
	Number of Generated Label Queries

	Discussion and Conclusions


