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Abstract. While head pose estimation has been studied for some time,
continuous head pose estimation is still an open problem. Most ap-
proaches either cannot deal with the periodicity of angular data or re-
quire very fine-grained regression labels. We introduce biternion nets, a
CNN-based approach that can be trained on very coarse regression labels
and still estimate fully continuous 360◦ head poses. We show state-of-the-
art results on several publicly available datasets. Finally, we demonstrate
how easy it is to record and annotate a new dataset with coarse orienta-
tion labels in order to obtain continuous head pose estimates using our
biternion nets.

1 Introduction

The estimation of head poses is an important building block for higher-level
computer vision systems such as social scene understanding, human-computer
interfaces, driver monitoring, and security systems. For many of these tasks, a
continuous head pose angle is arguably more useful than few discrete orientation
classes as yielded by most current head pose systems [8,34,4].

While many face pose and gaze estimation methods have been covered in
the literature, the task of regressing head pose is distinctly different in that it
also handles people not facing the camera, resulting in poses spanning the full
360◦ spectrum. Thus, head pose estimators need to be able to cope with the
periodicity of angular data, i.e. the fact that 361◦ corresponds to 1◦ and, for a
head pose of 0◦, a prediction of 359◦ is no worse than a prediction of 1◦. Face
pose and gaze estimators can conveniently sidestep this difficulty by constrain-
ing the prediction range to non-periodic intervals such as [−90◦, 90◦]. Another
difficulty in learning a head pose regressor lies in obtaining enough training data
with accurate regression labels [6,11]. All publicly available datasets, except [5],
are either restricted to coarse orientation bins, or to the range of front-facing
poses [6,14,2,15,9,10].

A multitude of approaches [25,32] has been proposed which solve only one
of the two aforementioned problems: either they cannot cope with periodic-
ity [26,24,34], or they need fine-grained regression data [35,33,16]. Since none
of this is satisfactory, we propose a principled approach to solve both problems
simultaneously.

Our approach is based on convolutional neural networks (CNNs), for which
we propose a novel output layer embedding an angle into two dimensions, coupled
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with a fitting cost function. It is able to handle fully periodic, continuous regres-
sion while only requiring coarse, discrete class-labels as training data, which are
easily obtainable from video recordings. We call our approach biternion nets.
Before demonstrating the effectiveness of the biternion output layer, we validate
our CNN architecture on several publicly available datasets and show that it
yields state-of-the-art results.

In summary, our contributions are threefold: (1) We present a CNN archi-
tecture that outperforms state-of-the art results on several public head pose
datasets. (2) We propose a novel combination of output layer and cost func-
tion to elegantly solve the problem of periodic orientation regression, which we
call biternion nets. (3) We show that we can learn continuous head-pose regres-
sion from discrete training labels. To demonstrate this, we present continuous
regression results obtained from a biternion net trained on data recorded and
annotated in less than two and a half hours.

2 Related Work

Head pose estimation has been a very active research field for the past 20
years [32,25]. Over time, authors have developed many different methods to
approach this problem. The probably most popular direction is the functional
mapping of images to a feature space where classifiers or regressors can directly
be applied. These mappings range from simple gradient-based features [24,7,21],
over covariance features [34], to learned functional mappings [26,33,4]. These
approaches often result in a manifold embedding of the images [26,34]. However,
if training data is sparse, it is hard to ensure the quality of these manifolds [19].
Another approach is to find facial landmarks, such as eye and mouth locations,
and use these to determine the pose of a face [9]. It is also possible to use track-
ing information to get a good prior for the head pose [7,10]. Here, interactions
between the body pose and the head pose can be exploited [5,8]. Several of these
techniques have also been used for objects such as cars or chairs [33,28,18].

While some of these approaches work on high resolution images [14,2,10,12],
the majority of them is based on low resolution images [26,24,5,34]. With the
recent availability of cheap RGB-D sensors, depth information has also been
used to improve head pose estimation [12].

The high activity within this field has resulted in a large number of different
datasets for head pose estimation [6,14,2,1,15,5,34,9,10], most of which are face
pose rather than head pose datasets and often only contain sparse head poses
and fairly coarse orientation labels. As we are interested in continuous head pose
estimations, most of these datasets are not suitable for our experiments.

Based on the available datasets, most approaches focus on coarse face poses,
while only few head pose estimation approaches and datasets exist [35,5,34]. Wu
and Toyama [35] estimate gradient distributions from 1024 different viewpoints
and match new views to the nearest viewpoint to determine the pose. Benfold and
Reid [5] use the walking direction obtained from unsupervised people tracking in
a video sequence to train a regression forest for the head pose. Tosato et al . [34]
use covariance features to classify head poses into a small set of orientation bins.
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CNNs have also been used for orientation estimation before. Qi [28] fine-
tunes a large pre-trained CNN to classify the orientation of chairs using a large
amount of rendered chairs with precise labels. However, using CNNs pre-trained
on ImageNet for low-resolution head pose estimation makes no sense due to
the significantly different filter resolution, type of data, and learning task. Most
similar to our approach is the one by Osadchy et al . [26], which also uses a CNN
for continuous head pose estimation. They learn a face manifold on (non-public)
data with regression labels, which enables them to jointly detect and estimate
the pose of faces. In contrast to us, they focus on using face pose data to improve
face detection and do not address the periodicity problem.

Some approaches also aim at solving the periodicity problem [33,16,18]. How-
ever, their approaches are typically based on nearest-neighbor matching or kernel
density estimation, meaning that they require dense orientation labels for train-
ing. All three of the above approaches use fine grained face datasets [14,1] and
it is unclear how well they could perform for head pose estimation.

To the best of our knowledge, only Huang et al . [19] aim at learning con-
tinuous regressors from a discrete face pose dataset. They learn a mixture of
local tangent subspaces that are robust to regression regions with bad coverage
in the training set. Their representation is based on HOG features and they use
high resolution images. It is questionable whether their approach can deal with
head poses, as HOG features are not very expressive for the back of a head.
Furthermore, they do not evaluate how continuous their regression really is.

In conclusion, based on existing approaches, the task of continuous periodic
head pose estimation is still unsolved. Here our approach comes into play.

3 CNNs for Head Pose Estimation

Throughout this paper, we work in the framework of deep convolutional networks
and stochastic, gradient-based optimization. In this section, we present the spe-
cific network architecture we use for all experiments, changing only the output
layer and cost function to match the task at hand. We then apply it to multiple
publicly available datasets, consistently outperforming current state-of-the-art
methods on those datasets.

3.1 The Network Architecture

We use a moderately deep, batch-normalized [20], VGG-style network architec-
ture [30] consisting of six convolutional layers with 24, 24, 48, 48, 64 and 64
feature channels, respectively, followed by a single hidden layer of 512 units,
and train it for a fixed duration of 50 epochs in all our experiments. For all
details about the network and the training procedure, please refer to the sup-
plementary material. We implemented the network in Theano [3] using IPython
notebook [27]. All numbers reported within this paper are averages over five
runs. While we will show that this architecture already performs very well, it is
likely possible to reduce the error even further by using deeper networks with
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Table 1: Class-average accuracies on the four classification datasets from [34].
The sample counts refer to the provided train/test splits. We obtain state-of-
the-art results on all datasets.

HIIT HOCoffee HOC QMUL

# Samples 12 000/12 007 9522/8595 6860/5021 7603/7618 9813/8725
# Classes 6 6 4 4 4 + 1

Tosato et al . [34] 96.5% 81.0% 78.69% 94.25% 91.18%
Lallemand et al . [21] - - 79.9% - -
Our CNN 98.70% 86.99% 83.97% 95.58% 94.30%

more careful regularization and a bag of other well-known tricks [23,13,36,29,17].
We do not further go down that road, since the goal of this section is simply to
demonstrate the suitability of CNNs in general, and our architecture in partic-
ular, for predicting head poses on low-resolution images.

3.2 Experimental Validation

We use the collection of datasets provided by Tosato et al . [34] to validate our
approach. First, we show results on those datasets that treat pose estimation
as a classification task in Table 1. These datasets contain very rough pose bins,
such as Front, Back, Left and Right, with the addition of FrontLeft and
FrontRight for HIIT and HOCoffee, and Background for the 5-class version of
the QMUL dataset.

In this case, the network’s output layer is a softmax-layer and the cost being
optimized is the negative log-likelihood. While the accuracies obtained by state-
of-the-art methods are already high, we show that our CNN architecture achieves
a significant improvement as it reduces the error by about a third across all
datasets.

We next turn to the datasets with continuous regression labels. Statistics
about the datasets are shown in Table 2, together with our results. The IDIAP
Head Pose dataset, which stems from a video recording of few people in a meet-
ing room, has a very restricted range of angles; specifically, 94 % of the pan
angles lie within the rather narrow, front-facing range of [−60◦, 60◦]. For this
experiment, the output of our network is computed by a fully-connected layer
with three outputs and the cost function is the mean absolute deviation. This
simple approach to pan-tilt-roll regression outperforms the state-of-the art in all
three dimensions. Please note that with a linear output layer and the MAD cost
function, the network does not learn the pan, tilt and roll angles jointly; they
merely share a common feature representation.1

The CAVIAR dataset comes in both a clean version containing only fully-
visible heads, and an occluded version containing only partially-occluded heads.
While they do come in the full range of angles, almost 40 % of the training
samples lie within ±4◦ of the four canonical orientations. A major downside of

1 This becomes evident by computing the derivatives of the cost w.r.t. the parameters:
the tilt and roll terms are absent from the derivative w.r.t. the pan and vice-versa.
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Table 2: A comparison to two regression datasets from [34]. The first number is
the mean absolute angular deviation, the second its standard deviation across
test-samples. We obtain state-of-the-art results on all datasets.

IDIAP Head Pose CAVIAR-c CAVIAR-o

# Samples 42 304/23 991 10 660/10 665 10 802/10 889

Pose range
pan tilt roll pan pan

[-101,101] [-73,23] [-46,65] [0, 360] [0, 360]

Tosato et al . [34] 10.3◦±10.6◦ 4.5◦±5.3◦ 4.3◦±3.8◦ 22.7◦±18.4◦ 35.3◦±24.6◦

Ba & Odobez [2] 8.7◦±9.1◦ 19.1◦±15.4◦ 9.7◦±7.1◦ - -
Our CNN 5.9◦±7.2◦ 2.8◦±2.6◦ 3.5◦±3.9◦ 19.2◦±24.2◦ 25.2◦±26.4◦

this dataset is that most images have been upscaled to 50-by-50 pixels from their
original size of, on average, 7-by-7 pixels. We still perform the comparison for
the sake of completeness, and our network manages to beat the current state-of-
the-art on such a difficult dataset.

These experiments show that the network architecture we use forms a solid
basis by itself and we can now use it to further investigate continuous, periodic
orientation regression.

4 Periodic Orientation Regression

None of the datasets in the previous section really uncover a crucial problem for
full head-orientation regression: periodicity. We can demonstrate that this is a
real problem by adding 360◦ to all negative pan values of the IDIAP dataset.
With this semantically identical dataset, the exact same (naive) network used
in the previous section becomes very unstable and only reaches errors of 12.9◦,
4.5◦ and 5.3◦ for pan, tilt and roll, respectively.

For memory-based models such as k-NN and kernel-methods, periodicity only
plays a role during the voting part of the algorithm, where it can easily be solved
by a modulo operation. But this kind of model suffers from the inherent need of
fine-grained training data, hence our focus on parametric models.

For parametric models such as CNNs, periodicity may cause problems in two
different ways: (1) The cost function to be optimized is unaware of the fact that
a prediction of 359◦ for a ground truth orientation of 0◦ should incur the same
loss as 1◦. Unfortunately, simply applying a mod operator to the output of the
network results in a discontinuous error function that can no longer be optimized
robustly. (2) A regression output which results from a matrix-vector product,
such as performed in most parametric models, is an inherently linear operation,
while we ideally want a circular output.

Our biternion approach solves both of these problems in an elegant way.

4.1 Von Mises Cost Function

The first problem of discontinuity in the cost function can be addressed by
turning to the von Mises distribution [22], which is a close approximation to the
normal distribution on the unit circle:
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pVM(ϕ | µ, κ) =
eκ cos(ϕ−µ)

2πI0(κ)
. (1)

Equation (1) defines its probability density function, where ϕ is an angle, µ is
the mean angle of the distribution, κ is inversely related to the variance of the
approximated Gaussian, and I0(κ) is the modified Bessel function of order 0,
which is a constant for fixed κ. Since it leverages the cosine function to avoid
any discontinuity, it is well-suited for gradient-based optimization and we can
derive the following cost function by inverting and scaling it accordingly:

CVM(ϕ | t;κ) = 1− eκ(cos(ϕ−t)−1). (2)

In the cost formulation, we call t the target value and κ is a simple hyperparam-
eter that controls the tails of the loss function.

4.2 Biternion Representation for Orientation Regression

While the von Mises cost presented above solves the first issue, the fundamen-
tal problem of predicting a periodic value using a linear operation persists.
Also, ‖y‖ = 1Inspired by the quaternion representation often found in com-
puter graphics, we propose a natural alternative representation of an angle by
the two-dimensional vector consisting of its sine and cosine y = (cosϕ, sinϕ),
which we call the biternion representation. Surprisingly, the only use of a similar
encoding we found in the related literature is that by Osadchy et al . [26], who
also embed angles into a similar, albeit different, higher-dimensional space. Un-
fortunately, their approach does not solve the periodicity problem since it uses
the discontinuous atan2 function.

The biternion representation immediately suggests the use of the continuous,
cyclic cosine cost widely used in the NLP literature [31]:

Ccos(y | t) = 1− y · t
‖y‖ ‖t‖

. (3)

Implementing a biternion output-layer in any framework for neural networks
is relatively straightforward, since all that is needed is a fully-connected layer
and a normalization layer. For clarity, Equation 4 gives the operation performed
by a biternion-layer during the forward pass, where W ∈ Rn×2 and b ∈ R2 are
the learnable parameters from the fully-connected layer:

fBT(x;W,b) =
Wx + b

‖Wx + b‖
(4)

The derivative of the normalization, necessary for the backward pass, can then
be stated as

∂xi
x

‖x‖
= ∂xi

x√∑
j x

2
j

=

∑
j 6=i x

2
j(∑

j x
2
j

) 3
2

=

∑
j 6=i x

2
j

‖x‖3
. (5)
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Notice how (1) the normalization in the biternion layer makes sure the output
values are learned jointly and (2) the normalization terms in Ccos can subse-
quently be omitted.

Finally, the ensembling of multiple biternion predictions, as needed by some
augmentation techniques, can simply be performed by averaging the vectors,
since the average of unit vectors is again a unit vector, a fact also used by
Hara et al . [16].

Biternions are Restricted Quaternions. We now show that biternions cor-
respond to unit-quaternions restricted to a single reference axis of rotation. Let
Qϕ be the quaternion

(
ax sin(ϕ2 ), ay sin(ϕ2 ), az sin(ϕ2 ), cos(ϕ2 )

)
representing a ro-

tation of ϕ around the axis a and Qθ the quaternion representing a rotation of
θ around the same axis. A quaternion representing the immediate rotation from
Qϕ to Qθ can be computed as

Qϕ
Qθ

, which corresponds to:
− cos(ϕ2 )ax sin( θ2 ) + ax sin(ϕ2 ) cos( θ2 )− ay sin(ϕ2 )az sin( θ2 ) + az sin(ϕ2 )ay sin( θ2 )
− cos(ϕ2 )ay sin( θ2 ) + ay sin(ϕ2 ) cos( θ2 )− az sin(ϕ2 )ax sin( θ2 ) + ax sin(ϕ2 )az sin( θ2 )
− cos(ϕ2 )az sin( θ2 ) + az sin(ϕ2 ) cos( θ2 )− ax sin(ϕ2 )ay sin( θ2 ) + ay sin(ϕ2 )ax sin( θ2 )
cos(ϕ2 ) cos( θ2 ) + ax sin(ϕ2 )ax sin( θ2 ) + ay sin(ϕ2 )ay sin( θ2 ) + az sin(ϕ2 )az sin( θ2 )


Using the fact that ‖a‖ = 1, the last entry of the quaternion —which en-
codes the cosine of half the angle represented by the quaternion— simplifies
to cos(ϕ2 ) cos( θ2 ) + sin(ϕ2 ) sin( θ2 ) = cos(ϕ−θ2 ). The other entries can similarly be
simplified, resulting in a quaternion representing a rotation of the angle from ϕ to
θ around the same axis a. This shows that biternions can be seen as quaternions
around a fixed reference axis a and the cosine cost corresponds to the amplitude
of the direct rotation between the predicted and the target biternions.

Relationship to the von Mises Cost. By comparing CVM and Ccos, it is
visible that they do not compute the same expression, i.e., the biternion-layer
coupled with the cosine cost does not optimize the von Mises cost. The von
Mises cost for the biternion layer can be written as:

CVM,BT(y | t) = 1− eκ(y·t−1). (6)

Notice the similarity to Equation 3; the main difference is the presence of
e, which “pushes down” the error around the target value, in effect penalizing
small mistakes less strongly.

4.3 Experimental Results

In order to investigate the relative usefulness of the von Mises cost and the
biternion representation for periodic regression, we now turn to the TownCentre
dataset [5]. This dataset contains heads of tracked pedestrians in a shopping
district, annotated with head pose regression labels. The prior distribution of
the pose angle is shown in the middle of Fig. 1. For all experiments, we train
on 7920 heads of 3960 persons and evaluate on 774 heads of 387 random but
different persons. The results can be seen in Table 3.
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Table 3: Quantitative regression re-
sults for the TownCentre dataset [5].

Method MAE

Linear Regression 64.1◦±45.0◦

Naive Regression 38.9◦±40.7◦

Von Mises 29.4◦±31.3◦

Biternion 21.6◦±25.2◦

Biternion+Von Mises 20.8◦±24.7◦
Benfold&Reid [5] 25.6◦ / 64.9◦

As a first baseline, we train a shallow
linear regressor on raw pixel values. We
then train a deep CNN using a naive re-
gression output and cost, as described in
Section 3.2. While the depth of the archi-
tecture allows it to perform much better,
it is still plagued by the two problems of
cyclic regression. Using the von Mises cost
solves the first problem in the cost func-
tion; this reduces the error by a significant
amount, showing that the more appropri-
ate cost function indeed does aid optimization. Following this, we evaluate the
performance of a biternion net both with the cosine cost and the von Mises cost.
As can be seen, the expressive power of the biternion layer solves both problems
encountered in periodic regression and produces the best results.

It should be noted that we cannot fairly compare to most of the related work
for various reasons: the results in [8] have been computed on only 15 persons,
which is far from representative for this dataset. Chamveha et al . [7] use a
tracker and scene-specific orientation priors. Even the numbers from Benfold
and Reid [5] are not a fair comparison since they use walking direction as a
prior. The first of their numbers in Table 3 is achieved by a regressor which has
seen all persons and their walking direction during training2, while the second
of their numbers has not seen any of the persons since it has been trained on a
different dataset.

5 Continuous Regression from Discrete Training Labels

We have shown that biternion nets are well-suited to fully-periodic head pose
regression. We now turn to the third contribution of this paper, namely the abil-
ity to perform continuous head pose regression using only discrete pose labels
for training. To simulate discrete pose labels, we discretize the continuous an-
notations of the TownCentre dataset. By varying the number of discrete bins,
we generate multiple datasets on which we train various approaches using only
the centers of the bins as training labels. We then evaluate the predictions made
by these approaches by computing their mean angular deviation w.r.t. the full
regression annotations of the test set. All results are reported in Table 4. We
first apply two classification-based baselines, followed by all regression-based
approaches introduced in Section 4.

In order to train a regressor using discrete pose labels, a first rather simplistic
approach commonly found in the literature is to train a classifier which outputs
the class center as prediction. For probabilistic classifiers, a natural extension of
this approach is to output the argmax of a quadratic interpolation of the class
with the highest posterior probability and its neighboring classes. On average,
this improves the results by about 2◦.

2 Their setup is justified for their task, but makes a fair comparison impossible.



Biternion Nets: Continuous Regression from Discrete Training Labels 9

Table 4: Regression results from different approaches for different discretizations.
Here infinity represents no discretization. Note that the Biternion layer handles
the discrete labels very well, both with the cosine and the von Mises cost.
Class
bins

Class center
Class

interpolation
Naive

regression
Von Mises Biternion

Biternion +
Von Mises

3 37.2◦±32.8◦ 35.5◦±30.4◦ 45.5◦±39.7◦ 36.6◦±34.5◦ 32.1◦±28.1◦ 32.2◦±28.8◦
4 34.9◦±30.5◦ 31.7◦±29.3◦ 43.0◦±40.6◦ 33.4◦±32.2◦ 27.1◦±27.3◦ 26.9◦±27.4◦

6 26.1◦±28.4◦ 24.1◦±27.6◦ 38.3◦±38.5◦ 31.8◦±33.1◦ 22.1◦±25.5◦ 22.7◦±26.7◦
8 24.5◦±28.6◦ 22.6◦±28.0◦ 40.6◦±39.7◦ 30.2◦±32.3◦ 21.8◦±24.9◦ 21.3◦±25.2◦

10 23.8◦±27.5◦ 21.9◦±26.9◦ 37.6◦±38.3◦ 28.8◦±30.8◦ 21.4◦±24.6◦ 21.8◦±25.5◦
12 23.6◦±29.4◦ 22.2◦±28.8◦ 39.0◦±38.2◦ 29.7◦±31.5◦ 21.4◦±25.3◦ 21.8◦±25.3◦
∞ - - 38.9◦±40.7◦ 29.4◦±31.1◦ 21.6◦±25.2◦ 20.8◦±24.7◦

CNNs compute a continuous function of their input and, during training,
each sample pulls the parameters of the CNN slightly into a direction leading to
a better prediction of its pose. This intuition suggests that it should be possible
for CNNs to learn a continuous mapping from images to pose angles even when
only given very rough pose labels. This is shown in the last four columns of
Table 4. As can be seen, this idea hardly works at all in the naive regression
case and is only somewhat improved by the von Mises cost. Biternion nets, on
the other hand, have no difficulty being trained this way and in fact outperform
the class-based approaches with any number of realistically annotable classes,
whether the cosine or the von Mises cost is used

Unfortunately, looking only at numbers representing an average error over a
large amount of images does not reflect the real advantage of biternion nets over
the classifier approach. For this reason, we plotted heatmaps of the predictions
made by a CNN classifier with quadratic interpolation and the predictions made
by a biternion net in Figure 1. These heatmaps clearly show that, while the class-
interpolation approach and biternion nets give similar scores, the predictions of
the biternion nets are vastly superior because they are more continuous and
similar to the distribution of the ground-truth angles.

5.1 Practicality

To show the potential of our approach, we recorded a small dataset using a
common smartphone camera and annotated it with eight class labels. For this,
we recorded 24 people in our lab and asked them to rotate on the spot. We
then manually cropped a square region in the resulting videos containing their
head and rescaled it to 50 × 50 pixels to make it compatible to our network

Softmax 4 Softmax 8 Ground truth Biternion 8 Biternion 4

Fig. 1: Prediction distributions for softmax and biternion output layers trained
on different discretizations. The classification results include the interpolation.
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Fig. 2: Qualitative results. The purple line shows the sine of the predicted ori-
entation angle across two full turns. For each head, the purple mark shows the
orientation as seen from above. Results are equally spaced and not cherry-picked,
more densely sampled results can be seen in the supplementary material.

architecture. In our scenario, the image sequence of a single person can easily be
annotated based on temporal constraints. We split up the full annotation task
into two annotation runs of four classes. First we annotate Front, Left, Back
and Right, followed by the same annotation with boundaries shifted by 45◦.
We select temporal regions in the video through their start and end frames and
mark any such region as one class. The resulting pair of annotations can then
easily be merged into an eight-class annotation. The whole process, including
the cropping of the head regions and the annotation itself, was done by a single
person and took no longer than two and a half hours.

We train a biternion net on the resulting dataset except for one person, which
we set aside for qualitative evaluation. We only train this network for five epochs
since the number of people in this dataset is orders of magnitude smaller than
in all previous datasets. We then let the biternion net predict the head pose of
the left-out person for each frame individually. The result, which can be seen
in Figure 2, clearly shows that the network estimates a fairly smooth sinusoidal
pose across the two turns the person made, despite having been trained on only
eight discrete pose annotations.

6 Conclusion

In this paper, we have introduced biternion nets, a CNN based approach. We
have validated our architecture on several public datasets and have shown that
our biternion layer is essential for continuous periodic orientation regression.
Our obtained results redefine the state of the art on all used datasets. We fur-
thermore show that, using biternion nets, it becomes possible to collect data
with discrete and coarse orientation labels, which can be annotated quickly and
cheaply, in order to train a continuous and precise head pose regressor. This
suggests that fine-grained regression annotations are no longer necessary for
continuous orientation estimation. The work in this paper was funded by the
EU projects STRANDS (ICT-2011-600623) and SPENCER (ICT-2011-600877).
Code is available at http://github.com/lucasb-eyer/BiternionNet.

http://github.com/lucasb-eyer/BiternionNet
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Biternion Nets: Continuous Head Pose
Regression from Discrete Training Labels
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Lucas Beyer, Alexander Hermans, and Bastian Leibe
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Abstract. In this supplementary material, we show additional details
about both the training procedure and the architecture of our CNN.
Furthemore, we show more detailed quantitative and qualitative results.

1 CNN Training

We use Theano [1] as a framework for our implementation. The details of the
architecture used throughout the paper can be seen in Table 1. The weights of
all convolutional and all but the output’s fully-connected layers are initialized
using “Xavier”-initialization [2] and all biases are initialized to zero. The weights
of both the softmax and the angle output layers are initialized to zero, while
those of the biternion output layer are initialized to random standard normal
values multiplied by 0.01 to break symmetry. Our implementation of batch-
normalization [3] uses a second forward pass through the data after each epoch
for collecting exact mini-batch statistics. Its γ weights are initialized to one and
its β weights to zero.

For the optimization, we implemented AdaDelta [5] for its stability so we
could use the same hyperparameters ρ = 0.95 and ε = 1 × 10−7 for all experi-
ments. We only perfromed data augmentation in two ways. First, we horizontally
flip all training images and adjust their label accordingly. Second, we use random
46 × 46 crops during training and average the output of five such crops (center
and four corners) during prediction. The size of all our minibatches is 100 and
we divide the accumulated parameter gradients by that same number. We ran all
experiments five times with random seeds taken from /dev/urandom, resetting
the optimizer’s state between runs, and report all our results as the average of
those five runs. Finally, as reported in the main paper, we use early-stopping at
epoch 50 for all but the last experiment, for which we stop after the fifth epoch
due to the comparatively very small size of the dataset.
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Table 1: The CNN architecture used throughout the paper, with two special
cases for differently shaped datasets. All Conv layers have a stride of 1 and all
MaxPool layers have a stride equal to their size, i.e. are non-overlapping.

General IDIAP HOC

Type Size Type Size Type Size

Crop size 46×46×3 Input 68×68×3 Input 54×123×3

Conv 24×(3×3×3) Conv 24×(3×3×3) Conv 24×(3×3×3)
Batch Norm 24 Batch Norm 24 Batch Norm 24
ReLU ReLU ReLU

Conv 24×(3×3×24) Conv 24×(3×3×24) Conv 24×(3×3×24)
Batch Norm 24 Batch Norm 24 Batch Norm 24
ReLU ReLU ReLU

Conv 24×(3×3×24)
Batch Norm 24
ReLU

MaxPool 2×2 MaxPool 2×2 MaxPool 2×3

Conv 48×(3×3×24) Conv 48×(3×3×24) Conv 48×(3×3×24)
Batch Norm 48 Batch Norm 48 Batch Norm 48
ReLU ReLU ReLU

Conv 48×(3×3×48) Conv 48×(3×3×48) Conv 48×(3×3×48)
Batch Norm 48 Batch Norm 48 Batch Norm 48
ReLU ReLU ReLU

Conv 48×(3×3×48)
Batch Norm 48
ReLU

MaxPool 2×2 MaxPool 2×2 MaxPool 3×3

Conv 64×(3×3×48) Conv 64×(3×3×48) Conv 64×(3×3×48)
Batch Norm 64 Batch Norm 64 Batch Norm 64
ReLU ReLU ReLU

Conv 64×(3×3×64) Conv 64×(3×3×64) Conv 64×(3×3×64)
Batch Norm 64 Batch Norm 64 Batch Norm 64
ReLU ReLU ReLU

MaxPool 2×2

Dropout p = 0.2 Dropout p = 0.2 Dropout p = 0.2

FullyConn 512 FullyConn 512 FullyConn 512
ReLU ReLU ReLU

Dropout p = 0.5 Dropout p = 0.5 Dropout p = 0.5

Softmax/Angle/Biternion Softmax/Angle/Biternion Softmax/Angle/Biternion
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Fig. 1: Confusion matrices of the last run of the classification task.

2 Confusion Matrices of the Classification Tasks

The confusion matrices obtained for the classification task of [4] described in
Section 3.2 of the main paper are shown in Fig. 1. The average accuracies may
slightly differ from those reported in Table 1 of the main paper because the
confusion matrices are those of the last run only, while the numbers in Table 1
of the main paper are the average of five runs.

3 Qualitative Results

Figure 2 shows further qualitative results based on our test person. The blue line
in the visualization represents the head pose as seen when looking down onto
the person from above it, i.e. the line being at the top signifies that the person
is looking away from the camera. Due to both anonymity and privacy reasons,
further persons will only be published in the final version. None of the pictures
are cherry-picked; we show every ninth frame of the full recording. A small
mistake of the biternion net is visible in the first three pictures of the second
row. Note how the biternion net makes very continuous, stable predictions even
though it works on a frame-by-frame basis, with no notion of time or order.
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Fig. 2: Qualitative results on our own dataset. The small purple mark indicates
the orientation of the person as seen from above, i.e. the top corresponds to back
and the bottom to front.
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