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Abstract— Given that 3D scan matching is such a central part of the
perception pipeline for robots, thorough and large-scale investigations of
scan matching performance are still surprisingly few. A crucial part of
the scientific method is to perform experiments that can be replicated by
other researchers in order to compare different results. In light of this
fact, this paper presents a thorough comparison of 3D scan registration
algorithms using a recently published benchmark protocol which makes
use of a publicly available challenging data set that covers a wide range
of environments. In particular, we evaluate two types of recent 3D
registration algorithms – one local and one global. Both approaches take
local surface structure into account, rather than matching individual
points. After well over 100 000 individual tests, we conclude that
algorithms using the normal distributions transform (NDT) provides
accurate results compared to a modern implementation of the iterative
closest point (ICP) method, when faced with scan data that has
little overlap and weak geometric structure. We also demonstrate
that the minimally uncertain maximum consensus (MUMC) algorithm
provides accurate results in structured environments without needing
an initial guess, and that it provides useful measures to detect whether
it has succeeded or not. We also propose two amendments to the
experimental protocol, in order to provide more valuable results in
future implementations.

I. INTRODUCTION

Three-dimensional registration, or scan matching, is a crucial
component of several robotics applications, such as mapping, object
detection, manipulation, etc. Scan registration can be formulated as
the problem of finding the relative transformation betwen two 3D
point clouds that best aligns them.

A common problem with research papers presenting novel scan
matching algorithms is that results are computed over a small num-
ber of scans from an application-specific environment. The need for
standardised datasets for benchmarking registration algorithms has
been recognised by the community and several recent works have
been proposed [14, 10, 13]. However, in order to obtain the full
benefits of such benchmarking efforts, it is critical that a sufficient
number of registration algorithms are evaluated in a systematic
manner, which is often not the case.

In this work we evaluate several recent registration algorithms
on the challenging benchmarking dataset proposed by Pomerleau
et al. [20]. We use this benchmark on two types of scan matching
algorithms: local registration using NDT [11, 24] as well as the
MUMC [15] algorithm for global matching. The purpose of this
evaluation is two-fold: first, it aids the establishment of a scientific
approach to comparing registration algorithms; and second, by
applying a benchmark dataset and protocol designed originally for
ICP-based algorithms to NDT and MUMC, we can identify the
general validity of the proposed benchmark.

The two types of methods evaluated in this paper have different
characteristics: MUMC decouples rotation and translation determi-
nation and does a global exhaustive search for the best alignment,
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(a) Apartment, “easy”, 93% overlap.(b) Apartment, “hard”,93% overlap.

(c) Plain, “easy”, 37% overlap. (d) Plain, “hard”, 37% overlap.

Fig. 1: Examples from the data sets.

while NDT registration uses local hill-climbing from an initial pose
estimate. What is common for our algorithms is that they all take
into account local surface structure around each point, and do not
match individual points, in contrast to common ICP variants.

The main contribution of the present paper is a thorough eval-
uation of these recent registration algorithms on a scale that has
not previously been attempted, using 210 scan pairs from different
types of environments, over 100 000 registrations in total. We
show that both NDT and MUMC achieve more robust registration
than ICP indoors, and that NDT performs well also outdoors.
In addition, we show that the Distribution-to-Distribution variant
of NDT (D2D-NDT [23]) is significantly faster than the others,
though slightly less robust than Point-to-Distribution variant (P2D-
NDT[11]). Furthermore, the present evaluation is the first one using
the proposed protocol for non-ICP methods.

A second major finding of this paper is that the proposed
benchmark [20] has significant shortcomings. First, the selection
of unique scan pairs from the datasets is small, thus limiting the
applicability for global scan matching approaches like MUMC.
Second, the initial offsets provided are often unrealistic, while the
amount of scan overlap is generally low. While this does indeed
make the dataset more challenging, it limits its discriminative power
in practically more interesting cases.

In addition to these main contributions, this article also presents
several recent advances for NDT registration and makes available
a new open-source implementation of the P2D-NDT algorithm.

II. RELATED WORK

Recently, much effort has been devoted to the benchmarking of
3D scan-registration and 3D SLAM algorithms. Different bench-
marking approaches differ in the types of scenarios, the sensor



used, and the kinds of ground-truth information available. In this
discussion, we restrict ourselves to 3D mapping benchmarks – as
opposed to the more common 2D benchmarks such as RADISH [7]
and RAWSEEDS [4].

A good collection of 3D datasets is provided at [13]. The majority
have been collected using a high-resolution, long-range, and large
field-of-view Riegl VZ-400 scanner. In some cases, ground truth
computed by manual registration using markers is provided. Some
datasets have additional information like co-calibrated thermal and
color data, and odometry. One of these datasets was used in Pathak
et al. [14] to benchmark the performance of MUMC [15] and ICP.
Most datasets in [13] are from outdoor urban scenarios. No protocol
is defined to systematically evaluate new algorithms.

In Wulf et al. [26], a 1.2 km path in an outdoor urban (mostly flat)
scene was captured in 924 scans of the RTS/ScanDriveDuo. A 2D
ground-truth map was obtained from the land-registry office, and
Monte Carlo localization (MCL) was used to compare the results
of four 6D-SLAM strategies against this 2D reference, and some
manual intervention was applied for quality control. The obvious
limitation of this benchmark is the lack of full 3D ground-truth and
providing only one type of environment.

Some authors have performed detailed studies of the “valleys
of convergence” for registration algorithms [12, 10, 6], though
typically only for a few scan pairs.

A tiltable SICK LMS 200 was employed in [10] to collect
scans in an underground mining scenario. The two algorithms
compared were ICP and NDT. No ground-truth was available, so
the algorithms are compared with respect to accumulation of errors
and the valley of convergence.

The common drawback of all the above mentioned benchmarks is
the availability of only a single kind of environment and of typically
only a few scan pairs. In contrast, the ETH benchmark used here
[19, 20] has a range of environments, 6 × 35 scan pairs (chosen
to have a uniform range of overlaps between 30% and 99%), with
3 × 64 pose offsets, sampled from a 6-DOF normal distribution.
Hence, (for local registration methods at least) we have 40,320
tests in total for the benchmark, per algorithm.

III. REGISTRATION ALGORITHMS

Let F and M be two partially overlapping point clouds, taken
from nearby poses. Additionally, we define F to be a fixed (or
reference) scan, while M is a moving (or reading) point set. The
registration task estimates the parameters Θ of a transformation
function T , such that T (M,Θ) is consistently aligned with F .

A. P2D-NDT

The Normal Distributions Transform was originally developed in
the context of 2D laser scan registration [2]. The central idea is to
represent the observed range points as a set of Gaussian probability
distributions. Assuming that a set of n point samples P = {pi =
(xi, yi, zi)} has been drawn from a Gaussian distribution N (µ,Σ),
the maximum-likelihood estimates of the covariance and mean can
be obtained from the observations:

µ =
1

n

i=n∑
i=1

pi, M = [p1 − µ . . .pn − µ] , Σ =
1

n− 1
MMT

The probability density function estimated in this manner might or
might not be a good representation of the sampled points, depending
on the extent to which the Gaussian assumption on P holds. At a
sufficiently small scale, a normal distribution can be considered
a good estimate of local surface shape, in that it can represent

planar and linear patches. Thus, the basic principle of the NDT is
to represent space using a set of Gaussian probability distributions.

The point-to-distribution (P2D) variant of NDT for 3D registra-
tion [9] maximises the likelihood of points from one scan, given the
NDT model created from the reference MNDT (F). The likelihood
that a point x is generated from MNDT (F) is then:

p(x|MNDT (F)) =

nF∑
i=1

wiN (x|µi,Σi), (1)

where nF is the number of Gaussian components of the 3D-NDT
model of point cloud F . The weight of each Gaussian component
wi determines the influence of that component in the model set on
the likelihood of a single point from the moving scan. Magnusson
et al. [11] propose to use trilinear interpolation in order to take
into account neighbouring Gaussians. The implementation used in
this work, however, only considers the closest Gaussian to each
point, thus setting wi to zero for all other Gaussians. P2D-NDT
minimises an approximation of the negative log likelihood function
of p(T (M,Θ)|MNDT (F)), over the space of transformation pa-
rameters Θ. After re-organisation of terms, the registration problem
is posed as minimising the objective function

fp2d(Θ) =

|M|∑
j=1

−d1 exp
−d2

2
m̂j

T Σ−1
m m̂j , (2)

where d1 and d2 are positive regularizing factors (values are
calculated based on the current NDT model resolution as described
in [8, 3]), j iterates over all points mj in the moving scan M,
(µm,Σm) are the parameters of the corresponding closest normal
distribution in MNDT (F), and m̂j = T (mj ,Θ) − µm. The
objective fp2d is doubly differentiable with analytic expressions
for the gradient and Hessian. Once MNDT has been constructed,
3D registration can be performed by minimizing the objective
function (2) using a numerical optimization technique, such as
Newton’s method.

The P2D-NDT implementation used here also employs a reg-
ularization step to avoid near singular Hessian matrices in the
optimisation step. The procedure is the same as for the D2D-NDT
algorithm, and is further described in Section III-B.

Important Parameters: In this work, the P2D-NDT implementa-
tion is a recent re-implementation as part of the perception oru
suite1. Several parameters govern the performance of the algorithm:

• Discretization levels: the algorithm performs registration on
models reconstructed at different spatial resolutions. Typically,
it is desirable to first register at a coarse resolution (e.g. 2 m
cells), followed by finer registration steps (e.g., 1 m and 0.5 m).
Note that the solver may go from finer to coarser grids, and
back again, in a similar fashion as is common in multigrid
methods for solving linear systems.

• Maximum number of iterations: controls the number of
optimization iterations allowed at each resolution.

• Subsampling grid size: in order to avoid bias from uneven
point distribution and to speed up computations, the moving
scan M is subsampled using a regular grid of a given reso-
lution. This resolution is another important parameter which
affects overall performance.

The parameter selection is summarized in Table I.

1http://wiki.ros.org/perception oru



B. D2D-NDT

The Distribution-to-Distribution (D2D) variant of the NDT regis-
tration algorithm, proposed by Stoyanov et al. [23], is an extension
of P2D-NDT which operates solely on NDT models. The algorithm
minimizes the sum of L2 distances between pairs of Gaussian
distributions in two NDT models. Formally, the transformation
between two point sets M and F is found by minimizing:

f(Θ) =

nM,nF∑
i=1,j=i

−d1 exp

(
−d2

2
µij

T (RTCiR+ Cj)
−1µij

)
(3)

over the transformation parameters Θ, where: nM and nF are the
number of Gaussian components in the NDT models ofM and F ;
R and t are the rotation and translation components of Θ; µi, Ci

are the mean and covariance of each Gaussian component; µij =
Rµi + t−µj is the transformed mean vector distance; and d1, d2
are regularization factors (fixed values of d1 = 1 and d2 = 0.05
were used). The optimization over Θ can be done efficiently using
Newton optimization with analytically computed derivatives.

Two modifications of the D2D-NDT algorithm, compared to
the previously published version [23], have been included in this
work. The prior version only considered the sum of pairwise
closest Gaussian components when forming the objective function
in Eq. (3), while the version tested here can be configured to use a
neighbourhood of close components. The second modification is the
addition of a regularization step to the computation of the Hessian
matrix, prior to the computation of a Newton step. We perform an
eigen-decomposition of H = QΛQ−1 and check if the smallest
eigenvalue λmin is close to 0. If that is the case, we compute a
regularized Hessian matrix Hr = Q(Λ + diag(λr))Q−1, where
λr = 10−3λmax − λmin. This procedure ensures that the Hessian
matrix is not excessively biased in one particular search direction
and helps avoid local minima in the objective function.

For D2D-NDT, we have the additional parameter of the neigh-
bourhood size; i.e., the number of Gaussian distributions used
in the evaluation of the objective function. While our previous
implementation [23] used size 0 (i.e., only the closest distribution)
we currently use size 1 (i.e., the 8 neighbours in the closest
layer). The other parameters (grid sizes and termination criteria)
are selected in the same way as for P2D-NDT.

A similar idea, also performing registration with an objective
function based on Gaussians, is used by the Generalized ICP
method [21]. However, Generalized ICP assumes locally planar
patches around each point, then calculates the normal direction to
the local surface and uses it to bias the orientation of the covariance
matrix, as opposed to P2D-NDT and D2D-NDT, which estimate the
Gaussian parameters using points within a local neighborhood.

C. Plane Matching (MUMC)

The “Minimally Uncertain Maximum Consensus” (MUMC) al-
gorithm [15] is a global alternative to the local methods like ICP
and NDT. This approach consists of a pre-processing step in which
plane patches are extracted from the 3D scans [25].

Especially for scenes containing man-made structures with large
planar surfaces, this leads to large data-compression: the memory
required for the extracted “plane-cloud” can be as small as 2.5%
of the original point-cloud [16]. Each plane patch is represented by
the unit normal n̂ and the distance d from the origin, along with the
polygonal boundary. Using a noise model of the 3D sensor model,
a 4×4 covariance matrix of the plane parameters is also computed
[17] for each patch.

TABLE I: Summary of parameter selections.

Step Description

P2
D

-N
D

T Data filtering of moving grid sampling, cell size 40 cm
Data filtering of fixed use full point cloud
Grid resolution 1 m, 2 m, 1 m, 0.5 m
Termination criteria 5 iterations, ∆Θ < 10−3

D
2D

-N
D

T Data filtering (both) use full point clouds
Neighbor layers 1
Grid resolution 1 m, 2 m, 1 m, 0.5 m
Covariance scaling d1 = 1, d2 = 0.05
Termination criteria 5 iterations, ∆Θ < 10−3

M
U

M
C Sensor noise model Gaussian, σ = 7mm

Size-similarity threshold 8
Diversity constraint on/off

The MUMC registration method then works directly on the two
“plane clouds” corresponding to the two scans to be registered. The
registration is based on finding the set of patch correspondences in
the two scans which leads to the most geometrically consistent 3D
transformation – as measured by the determinant of the estimated
covariance matrix of the transform. This covariance is a function
of the aforementioned plane-parameter covariance matrices, which
in turn are a function of the sensor range noise model. Hence,
a cascade of the uncertainties is maintained. The search space for
correspondences can be reduced by a set of consistency tests. Some
examples of these tests are: threshold for the allowable variation in
the size of a given patch between scans, or patch color-histogram
consistency [18], when color is available, e.g. in RGB-D scans.

MUMC also exploits the fact that for planes, the determination
of rotation is decoupled from translation. Thanks to this property,
combined with the vast data reduction in the number of patches
compared to the number of points, and due to the pruning of the
correspondence search-space by many consistency tests, MUMC
can afford to do a global, exhaustive search for the most consistent
set of patch correspondences. Hence, one of its advantages is that,
unlike local methods like ICP and NDT, it does not necessarily
need an initial guess for the transform. In fact, it has been shown
to be able to register scans taken far away from each other and with
considerable occlusion, without odometry [14].

Although the original paper [15] lists 8 parameters to be chosen,
in the latest version of the algorithm only 2 parameters are selected
explicitly. The others are estimated automatically based on the
sensor noise-level. Since the same sensor was used for all scans
in this paper, the same parameters were used for all the datasets.

• Sensor Noise Model: We assume Gaussian sensor noise in
range measurements, with standard deviation σ = 7 mm.

• Size-Similarity Threshold: The determinant of the inverse of
the 4×4 plane-parameter covariance matrix is proportional to
N4, where N is the number of points on the patch. The size-
similarity threshold L̄det [15] dictates the maximum allowable
change in N in two potentially corresponding patches from
the two scans. We set L̄det = 8, which allows the ratio of the
number of points in two potentially corresponding patches to
change by a factor of as much as exp(8/4) = 7.4. This is a
very permissive value.

In addition to the above numerical parameters, MUMC can be
run in two modes, as explained below.
The Plane Diversity Constraint (DC): For MUMC to compute
translation reliably, it needs to find plane correspondences in all
directions. When only two or less translation components can be
found reliably (e.g., the corridors in the ETH dataset desribed



below) the uncertainty is automatically detected by MUMC be-
cause a certain matrix is effectively numerically rank-deficient [15,
Eq. (25)].

In this case, there are two options for MUMC:
• DC-OFF: This option signals that we want to keep the rotation

estimate and the reliably found translation components. For the
translation component in the unreliable direction, we could
either set it to zero or, if available, we could use the odometry
component in that direction. In both cases, the error in this
direction will be large and this will adversely affect the
translation accuracy statistics of the algorithm.

• DC-ON: In this case, MUMC automatically declares the
registration as having failed rather than venturing to fill-in
unavailable translation components with heuristics or odom-
etry. This result will then not be considered for computing the
accuracy statistics.

D. ICP

The iterative closest point (ICP) algorithm was first introduced
in 1991 [5] and is still widely used for registration of 3D point
clouds. The two seminal papers on ICP were written by Besl
and McKay [1] and Chen and Medioni [5]. To summarize the
algorithm concisely: ICP iteratively refines the relative pose of
two overlapping scans by minimizing the sum of squared distances
between corresponding points in the two scans. Corresponding point
pairs are identified either by Euclidean point-to-point distance [1]
or by a point-to-plane metric [5], which measures the distance from
a point in one scan and the closest tangent plane in the other. Since
its conception, a large number of variants have been developed,
differing in, e.g., how points are selected and how to select point-to-
point correspondences. However, the main structure of the algorithm
remains. The point-to-plane variant has been shown to be more
accurate in many cases, and Pomerleau et al. [20] show that it also
performs better for the benchmark used here. As specified in the
experimental protocol, we compare our algorithms to the baseline
implementation of the well-established point-to-plane ICP variant.

The parameter selection for ICP is the same as in [20].

IV. DATA AND PROTOCOL

We have used the same six environments from the “Challenging
Laser Registration” data sets [19] as in Pomerleau et al. [20]. One of
the main advantages of these data sets is that the ground-truth poses
of all point clouds have been tracked with millimeter precision using
a total station. These six data sets cover both indoor and outdoor
environments, cluttered and open, some with large planes and some
with more variable surfaces.

Apartment: An apartment with five rooms. This data set has
denser scans than the others: 365 k points per scan, compared to
100 k–200 k for the others. (See Fig. 1a–1b.)

Stairs: A staircase transitioning from indoor to outdoor.
ETH: Large hallway with pillars and arches. These scans have

little constraints along the direction of the hallway, and also features
repetitive structures in the form of the pillars.

Gazebo (winter): A public park with a gazebo.
Wood (summer): Dense vegetation around a small path.
Plain: Open field atop a mountain in the Alps. Includes very

little geometric structure. (See Fig. 1c–1d.)
The data sets come with sets of initial pose offsets, to be

used for assessing the algorithms’ robustness to poor initial pose
estimates. These pose offsets are indeed quite challenging, and a
large part of them are much worse than what can be expected to be
encountered by a mobile robot. The offsets categorized as “easy”,

“medium”, and “hard”, and are generated from zero-mean normal
distributions, where the standard deviation is larger for the more
difficult categories. The “easy” poses have a standard deviation of
0.1 m and 10◦, while the “hard” poses have a standard deviation of
1.0 m and 45◦. Although the translation offsets are not so severe,
the rotation offsets are very large. Some of the “hard” poses have an
initial rotation offset of more than 90◦. This is very challenging for
any local registration algorithm, which may more likely converge
to a solution that is rotated 180◦ than the correct orientation. Even
some of the “easy” poses are offset more than 30◦, which is not
particularly easy – especially not for scan pairs with little overlap
from unstructured environments. Conversely, some of the “hard”
poses may be quite close to ground truth.

A. Suggested amendments to the protocol

For future work, we suggest the following amendments to the
protocol [20].

1) Fixed-magnitude pose offsets: The pose offsets should have
fixed magnitudes (as in Magnusson et al. [11]) rather than being
sampled from normal distributions with increasing variance. Given
the scale of the scans, reasonable magnitudes might be 0.5 m and
10◦ for “easy” poses, 2.5 m and 20◦ for “medium” poses, and 5 m
and 45◦ for “hard” poses.

2) More unique scan pairs: The large number of initial pose
estimates are relevant only to the local methods. For global methods
which do not necessarily need initial guesses, it is more important
to have more unique pairs and their ground-truth transforms.

V. RESULTS

The results of our evaluations are summarised in Figs. 2 and 3.
The rotation and translation errors are plotted separately, but pre-
cise registrations should have small errors both in translation and
rotation. Due to space constraints, we were not able to include
plots about all pertinent aspects of the benchmark. The complete
outcome2 for the NDT-based methods, as well as additional tables
and plots of the results3 are available online.

For the local registration methods (ICP and the NDT-based
methods), we provide separate plots for the scan pairs with “easy”
pose perturbations only (Fig. 3c) and the large overlaps only
(Fig. 3b), in addition to plots for the complete data sets (Fig. 3a).

Because MUMC does not make use of an initial estimate, the
only relevant sub-category is the amount of overlap. Another con-
sequence is that the statistics are computed only from the 35 unique
scan pairs from each data set, as opposed to 6720 combinations of
scan pairs and pose offsets for the local registration methods. In
addition to the magnitude of the final pose error, the entries for
MUMC also specifies the percentage of scans that were used to
compute the errors. The remaining percentage of scans could not
be registered, but were also successfully declared as having failed.

A. Accuracy

The accuracy of the final solution (after registration) is measured
as described in Pomerleau et al. [20, Eqs. 1–3]. The translation
error is the Euclidean norm of the difference between the ground-
truth and the output translation vectors. The rotation error is defined
as the geodesic distance from the rotation matrix that brings the
moving point cloud from the output orientation to that of the
ground-truth pose. Error statistics are discussed in terms of quantiles
where Q50 is the median and Q95 is the 95th percentile.

2http://projects.asl.ethz.ch/datasets/doku.php?id=laserregistration:
evaluations:home

3http://aass.oru.se/Agora/Benchmarks/



The unstructured data sets, Wood and Plain, are quite difficult for
all of the algorithms. Because they do not contain enough geometric
structure, they are challenging for MUMC in particular. Looking at
the percentages of matches estimated by MUMC to be successful,
we can see that it detects that it is not able to perform matching in
most cases. For Wood, MUMC detects a lack of features in 86%
of the 35 scan pairs with DC-ON (63% with DC-OFF), and only
tries to match the remaining 5 pairs, which means 14% of the pairs
from this dataset. Because of the lack of structure, the translation
error is above 50 cm also for the remaining pairs.

For Wood scans with large overlap (over 75%) ICP is accurate
(less than 10 cm error) up to Q50, while P2D-NDT is equally
accurate up to Q75. P2D-NDT is the only algorithm that is able to
register any outdoor scans with small overlap (30%–50%), and is
significantly better than the others for the Plain dataset (accurate
to Q50 for “easy” poses). D2D-NDT performs similarly to ICP for
the unstructured data sets.

Gazebo is an outdoor data set, but it also contains a prominent
built structure. In fact, this data set proved slightly easier than the
indoor data sets for the NDT methods, judging by Fig. 3a. We
believe that the reason for this is in the combination of large surfaces
that the moving scans can “slide on” and good constraints from the
gazebo itself, which are not planar enough to be useful for MUMC.

For the structured data sets (including Gazebo), P2D-NDT finds
accurate solutions up to at least Q75 as long as the pose offset is
“easy”, and about Q45–Q55 for all poses. This is in contrast to ICP,
which finds accurate solutions up to Q50 for the “easy” poses, and
Q30–Q40 for the all poses. Another finding is that D2D-NDT has
better overall accuracy for the complete datasets, but when looking
at the “easy” poses only, P2D-NDT is better. In other words, D2D-
NDT is less sensitive to poor initial pose estimates but sometimes
less precise when a good pose estimate is available.

MUMC performs much better for Apartment and Stairs than
the other datasets, because it can exploit the structure. Stairs in
particular works well. Counting the pairs that the algorithm flags as
successfully matched, MUMC DC-ON correctly registers 100% of
the pairs with large overlap from that dataset, and 95% of all pairs.
ETH, on the other hand, is difficult because it only has a strong
planar component along one direction. MUMC finds the correct
orientation in most cases, or detects that it cannot provide a certain
result (see Fig. 2b).

Some of the “easy” poses are also quite difficult for the local
methods. Practically no registrations converge to an acceptable
solution for all these cases. The exception is P2D-NDT on the
Gazebo dataset, with accurate solutions (within 5 cm and 2◦ from
ground truth) even at the 95th percentile for the “easy” poses.

Comparing Figs. 3a and 3b, it can be seen that ICP is more
sensitive to small overlaps than the NDT-based methods. Consid-
ering only scan pairs with large overlap, ICP’s results are more
similar to NDT’s than when considering the “easy” poses only.
NDT often succeeds up to at least Q25 also small overlaps (30%–
50%), although scan pairs with small overlap from the unstructured
datasets are very challenging, especially for D2D-NDT. As long as
there is diverse enough planar structure in the environment, which
is the case in Apartment and Stairs, MUMC is quite robust to small
overlap ratios, which can be seen by the fact that the corresponding
curves in Figs. 3d and 3e are similar.

B. Further discussion of MUMC results

The most important aspect of the MUMC results is that since
MUMC is a global method, no initial guess was provided to it.
The only categorisation pertinent to MUMC is the overlap level:

large (easy to register), medium, and small (difficult to register).
As noted above, the local algorithms (NDT and ICP) do require an
initial guess that is close enough to the true solution.

In addition to the converged 3D transform, MUMC also returns
a flag for whether the result can be considered successful (based
on the number of correspondences found) and a covariance matrix
of the transform.

The percentage of matches labelled by MUMC as successful is
noted for each dataset in the plots. The stricter MUMC DC-ON will
also consider a registration unsuccessful if certain components of
translation cannot be found, as explained in Sec. III-C. Therefore,
the success percentage of MUMC DC-ON for each dataset is less
or equal to that of MUMC DC-OFF.

The covariance matrix of the transform clearly shows the dom-
inant uncertain directions (the eigenvectors corresponding to high
eigenvalues). It is clear from Fig. 2b that the rotation determination
of both MUMC DC-ON and DC-OFF is very accurate for the cases
that are flagged as successful – in particular for the ETH dataset.

At this point it should be noted that the Hessian of the NDT
score function (2), (3) can also be used to construct a covariance
estimate of the pose after registration, in order to flag unsuccessful
matches [8, 22]. A detailed analysis of that is not within the scope
of the present paper, but is a topic of ongoing work.

C. Timing

The execution times when running the benchmark are summa-
rized in Figure 3. The reported times include all pre-processing (ex-
tracting plane patches for MUMC, building NDT representations,
constructing kd-trees for ICP, etc.) but exclude the time required
for loading the scan files from disk.

As aptly noted by Pomerleau et al. [20], it is difficult to make
precise comparisons of execution times. Many uncertainties affect
execution time: not only the hardware used, but also the compiler,
the skill of the programmers, etc. The execution times provided
here can only give a coarse estimate of the speed.

The execution times were measured on different computers. NDT
was running on a quad-core 3.50 GHz Intel Core i7 CPU. MUMC
was running on an 3.40 GHz Intel Core i7. Please note that these
are slightly faster computers than the 2.2 GHz Core i7 used for
ICP [20].

Although the implementations can make use of multiple cores,
for these tests they were all running in a single thread. Typically
four batches were being run in parallel (each on a separate CPU
core) to reduce the overall processing time.

Implementation details: The difference between the execu-
tion speed of ICP and P2D-NDT is smaller than what has been
reported in our earlier publications. One of the reasons is that
the ICP implementation used here (libpointmatcher4) uses more
efficient components (e.g., the kd-tree implementation, where most
of the execution time for ICP is spent, uses libnabo instead of
libann).Another reason is that the old P2D-NDT implementation5

runs significantly faster than this version, from perception oru.
Most likely, this is because the old implementation uses the OPT++
library for the central optimization loop, while perception oru
uses its own optimization implementation. However, our tests with
the old implementation has shown that it often is trapped in local
minima when used in this benchmark, which results in poorer
accuracy.

4https://github.com/ethz-asl/libpointmatcher
5http://aass.oru.se/∼mmn/software/ndt test suite v0.1.zip
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Fig. 2: Cumulative probability plots of rotation errors after registration. Rotation error (in degrees) is on the horizontal axis. The MUMC
plots also include the percentage of scan pairs from which the plots are generated. A suggested threshold for successful matches (2.5◦)
is marked with a vertical bar.
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(a) Cumulative probabilities of translation errors for NDT and ICP, for all types of
poses and overlaps.
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(b) Cumulative probabilities of translation errors for NDT and ICP, for large overlaps
(over 75%) but all poses.
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(c) Cumulative probabilities of translation errors for NDT and ICP, for “easy” poses,
but all levels of overlaps.
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(d) Cumulative probabilities of translation errors for
MUMC, for all scan pairs. No initial pose was given.
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Statistics of execution times, for all data sets.
Algorithm CPU Q50 Q95

Plane ICP i7 2.2 GHz 2.58 s 8.43 s
P2D-NDT i7 3.5 GHz 1.48 s 8.75 s
D2D-NDT i7 3.5 GHz 0.37 s 0.82 s
MUMC DC-OFF i7 3.4 GHz 2.95 s 18.01 s
MUMC DC-ON i7 3.4 GHz 2.41 s 12.95 s

Fig. 3: Cumulative probability plots of translation error after registration. Cumulative probabilities are on the vertical axes. Translation
error (m) is on the horizontal axis, On the left are plots for the local methods (NDT and ICP), and on the right are plots for the global
methods. The MUMC plots also include the percentage of scan pairs from which the plots are generated. A suggested threshold for
successful matches (10 cm error) is marked with a vertical bar.



VI. CONCLUSIONS AND FUTURE WORK

Judging by the results summarized in Figs. 2–3, which is the
result of over 120 000 scan matches, we conclude that MUMC and
NDT generally provides more robust registration than point-to-point
or point-to-plane ICP when faced with scan pairs that have either
small overlap or a poor initial alignment. Plots for point-to-point
ICP have been omitted due to space constraints. The main advantage
of MUMC is that it performs well even when no initial pose
estimate (from odometry) is available, as long as there is sufficient
structure in the environment. The two NDT-based methods (P2D-
NDT and D2D-NDT) do require initial estimates, but are much
less sensitive to errors in this estimate than ICP. D2D-NDT and, in
particular, P2D-NDT work better than MUMC outdoors, because
they have less strict assumptions on planarity. D2D-NDT is the
fastest of the evaluated methods, with a median execution time that
is about 7 times shorter than non-NDT methods.

For situations where no initial pose estimate is available, MUMC
provides a good solution in common indoor environments, and can
also provide information about whether it has successfully matched
two 3D scans or not. For real-time use on a robot, D2D-NDT is
preferable because of its faster execution speed. For challenging
data sets with little structure or little overlap, P2D-NDT provides
the best accuracy.

The benchmark protocol used here was designed for local reg-
istration methods. In future work, we will adapt the benchmark
to more fairly assess the performance also of global methods, by
including more unique pairs of scans from the given datasets.

Generating datasets of similar quality (with precise 6-DOF
ground truth poses) for other sensors types (e.g. Velodyne scanners
or RGB-D cameras) and environments would also be very useful.

More sophisticated algorithms also return the covariance of the
registration transform in addition to the transform itself. Some way
to automatically assess the accuracy of this estimation, at least in
terms of the primary uncertainty directions would be useful.
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