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Figure 1: SPENCER robot at Schiphol Airport during final deployment in March 2016.

Abstract

This deliverable reports on the evaluation of the SPENCER platform at Schiphol Airport during the
final integration week V in March 2016. We will report results based on the the evaluation criteria
set forth in T6.4 (technical, scientific, end-user and user-experience measures). In summary, during
the integration week the SPENCER robot did not show any technical failures, and the major system
components such as people tracking or close-range perception performed better than the state of the
art, compared on benchmark datasets. The robot travelled a total distance of 46.36km autonomously.
In addition, the user studies conducted with 18 participants showed overall participants’ appreciation
for the robot and provided valuable insights to direct future research in domestic service robots.

1 Introduction

This report documents the final and iterative evaluation of the Spencer robot with regards to technical-
and user experience tests. During the project lifetime, two technical integration and test events have
been conducted at the test site, Schiphol Airport, in November 2015 (integration week IVb) and
March 2016 (integration week V).

Two user tests with the Spencer platform have been conducted with users, collecting subjective
assessment of the robot’s capabilities. The first test was conducted with 29 small groups in a semi-
public university environment, documented in Appendix A. The second series of user tests were
conducted at Schiphol Airport during the integration week V in March 2016.

In this report we describe the Spencer platform (Section 2), technical tests (Section 3) and user
experience tests at Schiphol (Section 4). Conclusions are presented in Section 5. The robot will be
evaluated regarding several success measures as specified on page 6 of the Description of Work:

1. Technical measures (Section 2.4)

2. Scientific success measures (Section 3)

3. Use-cases specific impact- and subjective user experience measures (Section 4)

2
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Figure 2: Spencer base platform without (left) and with (right) anthropomorphic shell

2 The SPENCER platform

The design of the SPENCER platform called for an aesthetically-appealing platform, equipped with
hardware allowing the robot to autonomously navigation for an extended period of time. In this
section we will summarize the technical specifications of the SPENCER platform (Section 2.1), detail
the safety devices of SPENCER (Section 2.2), present an overview of the mission terrains (Section
2.3) and finally present the technical succes measures (Section 2.4).

2.1 Robot platform technical specifications

During a workshop session at the start of the project, documented in D1.1, specifications for the
SPENCER platform have been defined. These specifications include among others:

1. Motion in crowded areas

2. Autonomy; operate at least 1 working day1 without being recharged

3. Nice aesthetically designed, in line with KLM brand values

4. Maximum diameter to pass through standard doors, into elevators and through crowds.

Based on these specifications, a robot platform was developed (documented in D1.2, D1.3 and D1.4).
The robot base platform and robot with anthropomorphic shell can be seen in Figure 2. The main
technical specifications of the platform are as follows:

• Kinematics: symmetric differential drive with castor wheels

• Dimensions (h x l x w): 1926 x 810 x 800 mm.
18 hours
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• Maximum velocity: 1.6 m/s 2

• Acceleration3: 0.9 m/s2

• Power autonomy: 8 hours

• Maximal step climbing: 10 mm.

2.2 Safety devices

The SPENCER platform is equipped with four safety devices:

1. Wireless emergency stop button. Emergency stop button connected wireless to the platform.
When pressed, it opens it relay. Certified device.

2. Emergency stop button (2x). Common industrial emergency stop buttons. When pressed,
they open the safety loop.

3. Bumper (2x). The bumpers are mounted on a spring with a switch. When pressed the electrical
signal can trigger a relay.

4. Additional safety relay. Relay controlled by a PC via a USB port.

As can be seen in the Figure 3, all the safety devices are connected in series and if one triggers (i.e.
open its relay) the so-called safety loop opens and the platform stops immediately. Moreover the
doors housing the hardware are equipped of switches that will trigger the safety loop when opened.

During review meeting II, the reviewers asked for a safety audit to control that the initial mea-
sures were sufficient. During this audit it was shown that the software should also be able to trigger
the safety loop, when detecting an obstacle. It was decided to add a safety relay (point 4) directly
controlled by the software. The safety audit has been documented and reported in D6.6.

2.3 Mission terrains

The SPENCER robot operates indoors at Schiphol Airport, which features various environments pos-
ing challenges to the robot (both hardware- and software wise).

In the evaluation scenario, Spencer navigated through lounges and corridors (Figures 4-6), each
with different surfaces and lightning conditions. Part of the floors are made out of black shiny material
which is especially difficult for the lasers to detect.

Additional challenges which characterize the operating environment include conveyor belts and
obstacles such as benches, information signs and artworks (Figure 5).

In the Schengen-Gate guidance scenario, Spencer awaits passengers behind the Schengen barrier,
guides the passengers though Lounge 1, through a corridor to the B-piers, where the robot delivers
the passengers at the correct gate, such as gate B18.

2Tested at 1.6 m/s, maximum operating speed 1.3 m/s for safety reasons
3While moving forward, not when turning
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Figure 3: Schematic showing safety devices of Spencer. If one device is triggered the platform stops
immediately.

Figure 4: Lounge 1 can be characterized as a semi-crowded area with various intersection pedestrian
flows. Additionally this area (partially) has a black shiny floor. Immediately following Lounge 1, the
pedestrian flow splits towards piers B and C. Transfer T2-T3 are located in this area.

Figure 5: Both B- and C-piers contain gates on the left and right side, divided by two moving walk-
ways. Due to the width of the paths these easily get congested.

Figure 6: Various small thresholds can be found in the floors
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Table 1: Overview of support requests to BLUE.

2.4 Robot platform success measures

BLUE had the task to evaluate the system based on technical measures. The evaluation sessions were
short, as most of the time was taken for development and integration. Metrics measured during these
evaluation sessions would not have been relevant. In order to get data as relevant as possible, long
term metrics had to be defined.

It was decided to use support requests and interventions as metrics to evaluate the system on
technical measures during the project. The reliability of the platform can be traced from the delivery
of the platform to the final evaluation. It is also possible to analyze if the support requests were for
support (e.g. broken part), for improvement (e.g. bug tracking) or for new development (e.g. improve
braking distance).

Table 1 shows all the support requests chronologically. The date is indicated, the origin of the
support request and the topics. The indicated support, improvement and development has been added.

2.4.1 Additional developments

Interventions and support requests for additional developments happened twice and only before the
integration week III. The first development was the exchange of the ANT box in order to provide

6
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SPENCER with the latest hardware. The second development was the improvement of the braking of
the platform as first tests showed that the braking was weak and could therefore lead to safety issues.

2.4.2 Improvements

Between the integration weeks III and IV, a period of intense work on the platform, several support
requests were sent to BLUE for improvements on the platform:

• Synchronize the laser scanners in order to avoid having interference between them.

• Laptop compartment too hot: the laptops were crashing after getting hot in the compartment.
BLUE decided to add two fans to extract hot air, which solved the problem (Figure 7).

• Safety. Validate braking distance. Tests were performed in Toulouse, to be sure the braking
distance of both platforms were adequate and sufficient to deploy the platform in Schiphol.

• Safety loop, add a relay: the risk analysis showed that the software should be able to trig
the safety loop, which was solved whit adding a USB-relay controlled by the software and
triggering the safety loop.

• Connect ANT directly to PC1: In order to decrease the latency in the navigation command, it
was decided to connect the ANT box directly to one of the PC’s instead connecting it through
the switch.

• Tighten the head’s degrees of freedom (DoF). A spring has been added to the tilt axis.

• Rotate head: the consortium decided to move the robot backward (in order to keep the display
facing the passengers), the head had to be moved by 180 degree.

• Velodyne support: the consortium decided to add a Velodyne sensor in order to increase the
perception (See D2.7, Section 2.1 for additional information). BLUE designed the support
which has been printed with a 3D printer by ORU.

After the integration week IV, no more improvements were requested, mainly for the reason that
the system had to be stabilized rather than improved.

2.4.3 Issues on the platform

BLUE also received support requests for issues on the platform between integration weeks III and IV:

• One battery pack was deeply discharged, BLUE had to wake up the battery.

• The head pan axis was damaged. The motor was moving freely several times and was repaired.

The support requests after integration week IV were only related to the head. BLUE decided in
January 2016 to exchange the head, in order to use the new head on the platform in Schiphol during

7
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the final deployment. During integration week V at Schiphol, the tilt axis had to also be repaired
once, and the tilt axis controller was in error once as well.

Figure 7: Two fans were added to extract hot air, thereby preventing laptop crashes (left). From the
integration week IVb onward support requests were mainly related to the head (right).

2.4.4 Conclusion

Taking apart the additional developments and the improvements, there were 11 support requests re-
garding the head and two regarding the batteries.

The batteries suffered from a deep discharge, because the platform was not switched off. The
batteries could be cured following the procedure of the supplier. It was then decided to add a voltage
meter to indicate the battery level and warn users with a strong sound signal before the deep discharge.

The head was clearly the weak point of the platform. It has been designed as specified (2 DoFs).
The problem is that the specification was not defined enough, the consortium did not communicate
enough to meet the expectation of the ones with the development of the others. Accelerations needed
to satisfy interaction with people were much too high for the developed mechanics. In case of follow
up of the project, the question of the head should be debated again and a much more robust head
should be specified and developed if similar behavior must be realized. The alternative is to decrease
again the accelerations of the DoFs.

On the other side, there were no support request regarding the mobile base nor the passenger
interfaces (touch screen and boarding card reader).

In conclusion, the technical measures show that the platform is technically robust, with a note for
the head that should be improved for the next generation.

8
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3 Component-wise System Evaluations

All major components of the SPENCER platform were evaluated using standard measures that are
generally used for the particular components. Comparisons to results on benchmark data sets reported
by other research groups were performed. In detail, the following components have been evaluated:

• Mapping and localization (ORU)

• Group- and person detection and tracking (ALU-FR, RWTH)

• Online learning (TUM)

• Close-range perception (RWTH)

• Motion planning (CNRS, ALU-FR)

For a more detailed overview of the components we refer to D6.4.

3.1 Mapping and localization

The mapping component Normal Distributions Transform - Occupancy Map (NDT-OM) has been
evaluated in detail in [18]. For the live demo and testing sessions at Schiphol airport, it was difficult
to quantify the quality of the map, because we did not have access to ground truth. The quality of
the obtained map can be visually assessed by overlaying it with an aerial photo of the airport (see
Figure 8). It should be noted that since this environment does not contain loops that could aid global
error distribution, but rather consists of long corridors, mapping is very much dependent on precise
scan registration in order not to accumulate pose errors that would otherwise show up as bent or
shortened corridors. As can be seen in Figure 8, the map is highly metrically correct with respect to
the environment, with only a slight bend of the long corridor-like environment of Pier B (far left in
the image). This slight bending did not interfere with the quality of localization.

The localization component, Normal Distribution Transform - Monte Carlo Localization (NDT-
MCL), has been evaluated in an environment with ground-truth reference localization available [19].

Figure 8: Map built with NDT-OM overlaid with an aerial image of Schiphol airport.

9
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The reported localization error did not exceed 0.07 m. As with mapping, the lack of ground truth at
the airport made it impossible to perform quantitative test of localization quality. Instead of this, our
measure of success in the live demo at Schiphol airport has been to count how often it was necessary
to abort mission execution because of localization issues.

After resolving a technical issue of misalignment of the maps used for planning and localiza-
tion on March 18 we did not observe any case where it was necessary to abort mission. In other
words, from 19 March onward, the robot performed with accurate localization during 18919 m of
autonomous operation.

3.2 Group- and person detection and tracking

Person detection and tracking. The person detection and tracking framework of SPENCER has
been extensively evaluated in a paper published at ICRA’16 [12]. For this comparison a novel multi-
modal evaluation framework has been designed and extensive experiments have been performed on
two new challenging datasets. One dataset contains people walking and jumping around the robot
in a lab setting, and includes a groundtruth from a motion capture system; the second dataset was
recorded in the E pier at Schiphol airport in June 2014 during the first data recording event, and
manually annotated.

We compared our multi-modal people tracking system, based upon an extended nearest-neighbor
tracker [12, 13], against a tracker from the FP7 EU-project STRANDS [7], an older multi-hypothesis
tracker from previous work at ALU-FR [1], as well as the vision-based MDL-tracker from RWTH
[9] which was deployed in parallel on the robot to provide bounding boxes for some of the close-
range perception modules described in Section 3.4. For these experiments, all tracking systems were
provided with the same set of input detections, to prevent varying performance of different detectors
from having an effect on the evaluation. The detections used are gathered from different modalities,
reaching from upperbody [9] and fullbody detections [20] from the Kinect RGB(-D) data and laser-
based leg detections [2]. Some tracking results on the airport dataset are shown in Table 2. It can be
seen that the tracking system developed in SPENCER outperforms the other two systems, while being
computationally very efficient. As shown in Table 3, it even (slightly) outperforms the vision-based
MDL tracking system.

The best results have been achieved by fusing the vision-based upperbody detections in close-
range and the laser-based detections especially detecting persons far away. For a more detailed dis-
cussion, see [12]. One important remaining issue, which was outside of the scope of SPENCER, was
appearance-based person re-identification after lengthy occlusion events, which could significantly
reduce the number of relative identity switches (rIDS).

In Linder et al. [12], we also showed that better results (lower false positive rate, thus higher multi-
object tracking accuracy (MOTA)) can be achieved if a static occupancy grid map of the environment
is available to prevent false tracks from being initiated due to systematic misdetections. While such
a static map was not available for evaluation on the airport dataset used in [12], it was available (via
NDT-OM) for the final deployment at Schiphol in March 2016, and helped to further improve tracking
performance in the real use case.

10
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Airport Sequence (Pier E) – Multimodal
Method MOTA rIDS FP% Miss% MT ML Hz

STRANDS [7] 62.1% 226 18.7% 19.0% 114 27 6100
SPENCER [13] 64.2% 262 3.3% 32.4% 77 33 2222
MHT [1] 60.2% 676 17.2% 22.0% 97 24 29

Table 2: Person tracking performance using multi-modal detections (360 degree field of view), up to
a distance of 12.0m. The extended NNT developed in SPENCER, shown in the second results row,
delivers the best tracking performance in terms of MOTA at low runtime cost.

Airport Sequence (Pier E) – Front RGB-D
Method MOTA rIDS FP% Miss% MT ML Hz

STRANDS [7] 27.7% 227 39.4% 32.5% 92 47 13701
SPENCER [13] 44.4% 210 13.1% 42.1% 63 60 4287
MHT [1] 26.9% 338 39.4% 33.0% 87 51 28
MDL-Tracker [9] 43.7% 428 12.5% 43.1% 36 59 53

Table 3: Person tracking performance using only front RGB-D detections (54 deg FOV), to allow
comparison with the vision-based MDL tracker which ranks second despite using appearance info.

Group detection and tracking. Group detection and tracking performance is hard to evaluate since
the definition of a group can be highly subjective, and task-dependent. In the case of SPENCER, the
goal of the robot was to guide groups of passengers to their gate, often encompassing drives through
the airport terminal of 400-500m. Some statistics about the estimated number of persons in the guided
group of passengers were collected during the end-user evaluation (see Section 4) and are shown in
Table 4. However, these tend to be over-estimates caused by project personnel also following the
robot (e.g. the two interviewers, the remote emergency stop operator, and an engineer with a laptop),
and are therefore not represent a very helpful metric. In practice, no guidance run was aborted due
to the robot completely losing track of its group, which might also be due to a ‘fail-safe mechanism’
implemented in the group guidance supervisor that resorts to just waiting for any group to follow the
robot, if none of the original person tracks exists anymore.

3.3 Online learning

Our active online object learning method was evaluated on the KITTI benchmark data set consisting of
3D point clouds with pre-segmented object candidates such as pedestrians, cars, and cyclists. To show
that our approach can deal with streams of data, we compared it to the situation where the occurrence
of objects is uniformly sampled over the time of observation of the objects. Figure 9 shows the
resulting learning curves: while standard online learning methods such as the online Random Forest
can not deal well with data streams (see left plot), our method uses Mondrian Forests, which can
handle this much better (center plot). When used in an active learning scenario, this reduces the
amount of required training samples significantly (see left plot). More information our active online
object learning method can be found in [15].

11
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# Day Time Actual
group
size

Initial
group size
estimate

Final
group size
estimate

Track Dist. (m)

1 Sun 12:00 1 9 4 Transfer 2 - Gate B18 461.6
2 Sun 12:40 1 9 2 Transfer 2 - Gate B18 393.7
3 Sun 13:50 1 4 6 Transfer 2 - Gate B18 431.2
4 Wed 13:00 3 6 7 Starbucks - Gate B18 377.4
5 Wed 13:20 3 6 10 Gate B18 - Baggage hall 473.6
6 Wed 13:55 2 7 2 Baggage hall - Gate B18 439.5
7 Wed 15:20 2 5 1 Starbucks - Gate B18 407.1
8 Wed 15:55 1 8 1 Gate B18 - Baggage hall 467.9
9 Wed 16:45 2 5 1 Starbucks - Gate B184 413.5
10 Wed 17:05 2 3 2 Gate B18 - Starbucks

Table 4: Comparison of actual and estimated group sizes (number of tracked passengers) during end-
user evaluations, while the robot was guiding passengers (see Sec. 10). The estimated person count
in the tracked group is often higher than the actual value, due to project personnel being close by the
robot (e.g. two interviewers, remote e-stop operator, engineer with a laptop)

.

3.4 Close-range perception

Human attribute classification. This module was, in the end, not fully integrated with the final
system deployed at Schiphol, as the classifier was trained on higher-resolution data from a Kinect
v2 sensor, whereas the robot was (for electrical and mechanical reasons) still equipped with first-
generation Asus Xtion sensors. However, an extensive evaluation of frame-by-frame classification
accuracy of our novel method for full-body gender recognition in 3D point clouds [14, 11] was carried
out for the attributes gender, has long trousers, has long sleeves, has long hair, has jacket on a
previously recorded dataset from a lab environment. Depending on the attribute, we achieve between
75–90% classification accuracy at up to 300 Hz [11], and outperform our own previous baseline and
a HOG classifier5. Exemplary results are shown in Table 5. For future work after SPENCER, it
is planned to evaluate the method on real datasets recorded in the wild and smooth results of the
frame-by-frame classifier over time to improve classification accuracy.

Head/body pose estimation. The head and body orientation components (called BiternionNets)
were evaluated on publicly available benchmark datasets, where they consistently improved upon
the state-of-the-art by relative 7.3% and 6.7% classification accuracy, respectively (see Table 6(top)).
When doing regression, BiternionNets reduce the angular error by up to 43.3 degree absolute (see
Table 6(bottom)). We also evaluated the effect of the proposed Biternion loss, compared to various
simpler baselines (see Table 7). A more detailed experimental evaluation has been published in [5].
As it is unrealistic to annotate exact regression ground-truth for the data recorded at the Schiphol
airport, we only evaluated the component qualitatively. The predictions looked reasonable and con-
sistent over time, across many different people that were never seen before.

5Note that there are not many existing baseline methods for human attribute classification that operate on RGB-D data.
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KITTI dataset - Active Learning

Figure 9: Left: Learning curves of two standard online learning methods: online Random Forests
(ORF) and online multi-class Gradient Boost (OMCGB), both evaluated on the original and the re-
sampled data (“stream” vs. “random”). As we see, the performance of both methods for the original
data stream is significantly worse than for the resampled set. Center: Learning curves of the Mon-
drian forest for the “re-sample” experiment. The MF classifier can deal much better with the data
stream. Right: Classification accuracies for Active Learning using an MF and an ORF, where only
5%, 10% and 20% of the most uncertain data points are queried. Again, the MF clearly outperform
the standard ORF.

Gender (1) (1)–(3) (1)–(4)

HOG 78.0% 76.9% 77.0%
[14] 89.8% 83.7% 82.6%
Ours 90.4% 87.0% 86.3%

Long trousers (1) (1)–(3) (1)–(4)

HOG 65.0% 60.0% 59.4%
[14] 69.4% 66.0% 64.1%
Ours 83.6% 78.0% 76.2%

Long sleeves (1) (1)–(3) (1)–(4)

HOG 63.2% 60.8% 60.7%
[14] 62.3% 61.8% 61.0%
Ours 76.9% 73.8% 72.8%

Long hair (1) (1)–(3) (1)–(4)

HOG 74.3% 72.6% 72.7%
[14] 83.7% 77.9% 77.2%
Ours 87.2% 83.3% 82.9%

Table 5: Classification accuracy of different human attributes on ALU-FR’s human attribute dataset,
including static poses (seq. 1), walking sequences (seq. 2+3) and close-up interaction (seq. 4) [11].

Articulated upper-body pose estimation. For this task, we developed approaches in two direc-
tions. The RGB-D based skeleton tracker, used for the Schipol deployment and described in D3.3,
was heavily optimized for run-time and low computational effort in order to run on the robot in par-
allel to all other perception components. Qualitative tests showed that the tracker ran at video frame
rate and worked well for mostly front-facing walking people in close range to SPENCER robot. As
the tracker was trained with scenario-specific training data, however, its performance could not be
formally evaluated on benchmark datasets from the literature.

In parallel, we developed a Convolutional Neural Network (CNN) based body pose estimation
approach that operates on single color images. This approach could be evaluated on the standard
human body pose estimation benchmarks, which we did to great success. As shown in a recent
BMVC’16 submission [17], our approach achieves top results on the MPII benchmark (see Tab. 8)
and close-to-top performance on the LSP and FLIC datasets.

13



ICT-FP7-600877-SPENCER Deliverable D6.5

HIIT HOCoffee HOC QMUL
# Samples 12 000/12 007 9522/8595 6860/5021 7603/7618 9813/8725
# Classes 6 6 4 4 4 + 1
Tosato et al. [22] 96.5% 81.0% 78.69% 94.25% 91.18%
Lallemand et al. [10] - - 79.9% - -
Our CNN 98.70% 86.99% 83.97% 95.58% 94.30%

IDIAP Head Pose CAVIAR-c CAVIAR-o
# Samples 42 304/23 991 10 660/10 665 10 802/10 889

Pose range pan tilt roll pan pan
[-101,101] [-73,23] [-46,65] [0, 360] [0, 360]

Tosato et al. [22] 10.3�±10.6� 4.5�±5.3� 4.3�±3.8� 22.7�±18.4� 35.3�±24.6�

Ba & Odobez [3] 8.7�±9.1� 19.1�±15.4� 9.7�±7.1� - -
Our CNN 5.9�±7.2� 2.8�±2.6� 3.5�±3.9� 19.2�±24.2� 25.2�±26.4�

Table 6: Head/body pose estimation results: (top) Class-average accuracies on the four head pose
classification datasets from [22]. The sample counts refer to the provided train/test splits. (bottom)
A comparison to two pose regression datasets from [22]. The first number is the mean absolute
angular deviation, the second its standard deviation across test-samples. Our CNN approach obtains
state-of-the-art results on all datasets. (Tables from [5])

Method MAE
Linear Regression 64.1�±45.0�

Naive Regression 38.9�±40.7�

Von Mises 29.4�±31.3�

Biternion 21.6�±25.2�

Biternion+Von Mises 20.8�±24.7�
Benfold&Reid [4] 25.6� / 64.9�

Table 7: Head/body pose estimation: Improvement in Mean Angular Error (MTE) our Biternion
CNN achieves, compared to various baselines on the TownCentre dataset [4] (Table from [5]).

3.5 Motion planning

During integration week V we have further fine-tuned the motion planner to take the particular dy-
namics of Schiphol Airport into account. As a measure of success of the motion planner we compared
the distance the robot drove autonomous compared with not autonomous (in meters).

Table 9 details the distances traveled every day, which is reported as sum of the distances traveled
by the robot autonomously and not autonomously. Overall the robot drove autonomously circa 46
kilometers in 15 days. Only on particular days like the one of the data recording and the mapping
sessions, the robot did not drive autonomously.

14



ICT-FP7-600877-SPENCER Deliverable D6.5

Method Head Shoulder Elbow Wrist Hip Knee Ankle PCKh
Hu et al [8] 95.0 91.6 83 76.6 81.9 74.5 69.5 82.4
Carreira et al [6] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3
Tompson et al [21] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0
Pischulin et al [16] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Wei et al [23] + LSP 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Ours 96.8 93.1 85.2 79.7 85.8 78.7 71.8 85.1

Table 8: Comparison of our CNN-based body pose estimation approach with recent state-of-the-art
methods on the MPII benchmark using PCKh @ 0.5. Note that the approach by Wei et al. [23] used
an extended training set and is therefore not directly comparable (Table from [17]).

4 End-user evaluations

The research and integration activities over the past three years have resulted in a platform which
is technically safe and capable of navigation autonomously at an airport. One of the moments of
trusts of this project is the user evaluations conducted with the SPENCER platform, to prove that
besides being technically capable, a robot like SPENCER is also deemed acceptable and useful by
representative users, in this case airport passengers.

Two user evaluation studies have been conducted with the SPENCER robot to assess user expe-
rience of the SPENCER robot. The first event took place in a semi-public space at the University
of Freiburg, where we assessed participants impression of the robot. Questionnaire data showed that
participants were in general positive about the robot, and the open questions revealed that participants
were in general positive about the autonomous navigation and obstacle avoidance capabilities of the
robot. Furthermore, most participants believed the robot acted in a socially normative way.

The second user study has been conducted at Schiphol Airport during the integration & demon-
stration event in March 2016. Over the course of two days ten groups of users have been invited to
be guided by the SPENCER robot, and afterwards participate in a brief interview. In general, the user
groups can be characterized as diverse. In this section we will describe the method and results of
the user study conducted at Schiphol Airport. All participants participated in one of two related test
scenarios, which we will describe in Section 4.1. After this we will describe the sample (Section 4.2),
measures (Section 4.3) and results (Section 4.5).

4.1 Test scenarios at Schiphol

The original test scenario as defined during the use-case workshop held on April 9, 2013 included
SPENCER awaiting passengers at their arrival gate (in the non-Schengen area). Due to airport re-
furbishments the consortium modified the test scenario into the current scenario, which allows for
the testing of all components, the main difference is that the distance over which is being guided is
smaller, and the robot does not collect passengers itself.

Tests at Schiphol Airport took place in the Schengen-part of the terminal: this area encompasses
Lounge-1, Transfer-2, the B- and C-piers and the upper level of the D-piers. As SPENCER would
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Date Dist. Auton. Dist. Not Auton. Dist. per day Day’s event
09/03/16 0 4210 4210 Mapping session
10/03/16 589 1055 1644
11/03/16 2168 2701 4868
12/03/16 371 1555 1926 Mapping session
13/03/16 3475 1099 4574
14/03/16 3932 2176 6107
15/03/16 3768 882 4650
16/03/16 2248 1739 3986
17/03/16 3830 2249 6079
18/03/16 7060 1877 8937 Film crew
19/03/16 2235 1096 3331
20/03/16 4397 627 5024 User study (morning)
21/03/16 4813 1084 5897
22/03/16 3562 1379 4941 Review
23/03/16 3912 1980 5891 Film crew and user study
24/03/16 0 1051 1051 Data Recording and Packing
Total 46360 26759 73118

Table 9: The table details the distances (in meters) traveled every day (Dist. per day) during the final
demo in Schiphol. The total distance is split into two: the distance traveled with the robot driving
autonomously (Dist. Auton.) and not autonomously (Dist. Not Auton.). Only on particular days like
the one of the data recording and the mapping sessions, the robot did not drive autonomously, in the
remaining days the robot was mainly operated autonomously.

have to take an elevator to reach the Schengen D-piers this area was deemed beyond the scope of the
current tests, and therefore not mapped.

In the first test scenario SPENCER would pick up passengers in Lounge-1 or at the Starbucks,
and guide them to gate B18 (Figure 10). Gate B18 was chosen as it would require SPENCER to
pass passengers waiting at other gates, and a number of shops along the way. This scenario required
passengers to interact with the robot using a test boarding card. The second scenario which we
evaluated was one where SPENCER picked up passengers in the B-piers and guided them to Lounge-
1, specifically the stairs to the baggage hall (Figure 11). In this scenario passengers did not have to
use a test boarding card, rather they could select this point on the touchscreen display.

In each scenario SPENCER guided through the more crowded Lounge-1, the junction near Transfer-
2 and the corridor between B-piers and Lounge-1, which can be characterized as a long hallway,
featuring moving walkways and static objects such as columns, benches and artworks (Figure 12).

4.2 Participants

Ten trials with 18 participants were conducted over two days (Sunday 20 March and Wednesday 23
March). The difference between these trials lies in the measures; the questionnaire on Wednesday
was slightly modified; we will elaborate on this difference in Section 4.3). Information about the
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# Day Time Group
size

Track Distance
(m)

Duration
(mm:ss)

Comments

1 Sunday 12:00 1 Transfer 2 - Gate B18 461.6 07:36
2 Sunday 12:40 1 Transfer 2 - Gate B18 393.7 08:05
3 Sunday 13:50 1 Transfer 2 - Gate B18 431.2 14:41
4 Wednesday 13:00 3 Starbucks - Gate B18 377.4 06:35 Project staff
5 Wednesday 13:20 3 Gate B18 - Baggage hall 473.6 10:17
6 Wednesday 13:55 2 Baggage hall - Gate B18 439.5 16:19
7 Wednesday 15:20 2 Starbucks - Gate B18 407.1 06:44
8 Wednesday 15:55 1 Gate B18 - Baggage hall 467.9 08:09
9 Wednesday 16:45 2 Starbucks - Gate B186 413.5 06:33
10 Wednesday 17:05 2 Gate B18 - Starbucks - - KLM staff

Table 10: 18 participants divided over 10 groups, participated in the user evaluation at Schiphol. Data
from trial #10 missing due to a recording error.

group distribution is provided in Table 10.

The sample consisted of 11 males and 7 females, aged between 26 and 54 (M=37.06, SD=9.04).
Ten participants indicated the purpose of their journey was business, 8 participants indicated pleasure.

4.3 Measures

Three types of measures were collected during the user studies, these being:

1. Feedback questionnaire (individual, self-reported)

2. Interview (group)

3. Notes taken by one of the researchers during guiding7

7We added this measure for the user studies on Wednesday, as we found out on Sunday that because the distance traveled
was quite long, participants forgot specific positive or negative events which occurred during the guiding.

Figure 10: The first scenario required passengers to identify themselves using their test boarding card
(left), after which they were being guided to gate B18 (right)
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Figure 11: In the second scenario the robot guided passengers from the B-piers towards the baggage
hall in Lounge-1

Figure 12: SPENCER navigating through the junction behind Transfer-2 (left) and waiting for another
passenger to pass (right)

We will discuss each of the three measures briefly below.

The feedback questionnaire consisted of 3 journey related questions (start, end and purpose), the
group size and participants’ gender and age. The remainder of the questionnaire consisted of 8 7-
point Likert scaled statements about the appearance- and behavior of the robot, and the influence
of the service on participants’ customer satisfaction. The questionnaire on Wednesday included an
additional 2 items about the robot, as well as a question on participants’ opinion of robots in general.
Both questionnaires can be found in Appendix B.

Semi-structured interview were conducted with the groups, addressing topics such as the first
impression of the robot, positive & negative experiences, improvement of customer satisfaction and
general points of improvement. Interviews lasted between 3 and 19 minutes.

On Wednesday one of the experimenters accompanied the group, and made notes about events
participants found noteworthy. Before the experiment, participants were encouraged to think aloud
about their experiences.

4.4 Data analysis

For the purpose of this analysis, we report the results of the feedback questionnaire and interviews.
The feedback questionnaire was analyzed using standard statistics software. The interviews with the
recruited participants have been transcribed on a detailed level. In the next step, these data were coded

18



ICT-FP7-600877-SPENCER Deliverable D6.5

Figure 13: Results of the self-reported questionnaire indicated participants were in general satisfied
with SPENCER’s performance.

using a qualitative data analysis software package8, which with each statement made by a participant
was coded in two iterations. In the final step, all statements having a particular code were analyzed,
and the research team searched for commonalities and noteworthy experiences.

4.5 Results

In this section we will present the results of the end-user evaluation. We will first present general
findings, as gathered through the feedback questionnaire. In the consecutive subsections we will
discuss particular topics discussed during the interviews. Where applicable we will illustrate our
findings with quotes and photos.

Figure 13 shows the results of the feedback questionnaire. Two questions were reformulated on
the “Wednesday questionnaire”‘, therefore we present means for both questions. As can be seen in
Figure 13 self-reported scores are generally high for all measures; this warrants the first conclusion
participants in general had a positive impression of the robot. The items “reliability” and “acted
appropriately” scored relatively low; the interview data allows us to interpret this result, which we
discuss further on in this section.

Though the sample size is small - the findings are therefore not generalizable - we have conducted
T-tests to test for differences on the dependent variables. Specifically we have tested for differences
in gender and journey purpose. We found a significant difference of gender on likeability and appear-
ance: females thought the robot was more likeable (M=7.00, SD=0) than men (M=5.45, SD=1.51),
t(16)=-2.682, p<0.05. In a similar fashion females thought the robot’s appearance was significantly
more appealing (M=7.00, SD=0) compared with males (M=5.91, SD=0.831), t(16)=-3.434, p<0.01.

8Atlas.ti
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The interview data has been analyzed using the approaching outlined in Section 4.4.

4.5.1 General impression

In general participants had a positive impression of the robot. Ten out of fifteen participants who
commented on this question indicated their first impression was that the robot was “nice”,“great”, or
“helpful”; positive in general. Other participants were surprised to see a robot at the airport, or could
not fully identify the function of the robot. One participant commented that

“My first impression is that I thought it was a security robot, so I didn’t think it was a guided, but
because of the color looks like security, police, something.”

We will further comments on the appearance of the robot in Section 4.5.2. Another feature which
surfaced regularly was the user interface.

To guide our semi-structured interview, we designed an interview covering various themes we
believed were important, such as the appearance and behavior of the robot, ease of use, whether they
received enough feedback from the robot, and if there were situations in which participants believed
the robot was especially rude or polite. We also discussed in which scenario’s participants thought
this robot would be especially useful. Before going into those topics, we first asked participants if
they could name particular positive and negative aspects of their experience with the robot. We have
incorporated these comments into the various sections.

4.5.2 Appearance

Eight participants commented specifically on the appearance of the robot. Six participants positive
about the robot, as illustrated by the quote above. One participants voiced his concern about the two
emergency stop buttons, as he associated that with danger, and another participant said the colors first
made him think that it was a security robot, because of the blue color. The colors were indeed not
always immediately associated with the KLM brand colors, as evidenced by the following quote:

“Maybe do a girl one, make it pink. For like, political correctness. Obviously you’ll get someone
who says like ‘why Spencer‘. I don’t know. I’m just throwing it.”

4.5.3 Guiding behavior and speed

Fourteen participants commented on the speed of the robot; three participants who followed the robot
indicated the robot could have driven faster, however, these participants followed the robot when it
was not very crowded in the terminal. Five participants indicated the robot drove too fast, especially
if the robot were to guide a family around.

Two recurring comments regarded the general driving behavior of the robot: participants liked
the fact that the robot stopped when people were too close to the robot, however, especially in more
crowded situations this happened too often. Coupled with the fact that replanning was perceived
as taking quite long, participants general impression was that the robot was less suited for guiding
passengers in a congested area, especially if they were under time pressure.
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“Yeah, a slower process. Like instead of just stopping, just gradually come to a halt, I think that
would be better, yeah.”

4.5.4 Appropriate behavior

We asked people if there were particular moments where they felt the robot behaved in particular rude
or polite. Answers were quite diverse, and ranged from neutral to “all good”. The tone of the answers
was similar as we found with the feedback questionnaire: moderately positive. One participant who
was guided commented that: “Well, here it is really really crowded. So this is something like, there
were a few moments when you were just running, and some moments it was so slow. You don’t actually
have an average, because it was too much of both sides. And also the stops were really like... woof.”

Another participant commented that it would perhaps be beneficial to have specific lines for the
robot, as the robot stopped quite often in crowded environments. This is one of the recurring themes
which we got from the interviews, and we will reflect on this when discussing suggested improve-
ments (Section).

4.5.5 Reliable & Easy to use

Seven participants were explicitly asked whether they thought the robot was reliable. All participants
indicated the robot was reliable. Five passengers commented on the easy-of-use, and indicated it was
very easy, though at the same time all participants who were guided towards the B-piers, and had to
use a test boarding card, had issues using the boarding card reader. All passengers commented on this
issue.

“Yes, except for, I don’t know how, in which direction to scan those codes. I only worked when I
hold it like that.”

4.5.6 Feedback

With the exception of the use of the boarding card reader, participants believed there was enough
feedback while being guided. All participants who had to use their boarding card reader commented
that it was difficult to understand the workings of the boarding card reader. Furthermore, participants
suggested to add a map to the user interface, and perhaps additional information, in particular where
to collect their luggage (in case of being guided to the baggage hall), and the location of facilities
such as toilet and shops.

“So while we were being guided, the feedback was definitely enough, so the information it was
showing how closing we were to the gate, and everything, and it was great. I think that at the
beginning the phase where I was supposed to scan the boarding pass, there could be more explanation
on how to do it, just to put the boarding pass and wait”

Eight participants commented that feedback could be improved by providing more auditory feed-
back. Current auditory feedback was limited to “Excuse me”, when the robot was blocked by people.
Both auditory feedback to warn bystanders, and to inform the guided passengers about the process
(e.g. “Let’s go”, “we’re almost there”). None of the interview participant expected the robot to be
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able to conduct complex conversations, as illustrated by this comment: “There could be, further in
the project, there could be more interaction with the robot. So not only through the interface, but
maybe also some voice-over, something like that.”

4.5.7 Improving customer satisfaction

We asked 13 people if a service like SPENCER would improve participant’s customer satisfaction; 12
people answered positively to this question, one participant was undecided. Three participants stated
that it was a good thing that KLM invested in new technologies. Other participants also indicated that
this service at Schiphol would be more for entertainment, as it wasn’t too hard to find your way at
Schiphol - for experienced travelers.

“I think it shows that KLM is not afraid of technology itself.”

4.5.8 When using SPENCER would be attractive

In the interviews on Wednesday we asked participants in which scenarios a service like SPENCER
would be useful. Three out of six participants indicated they would not need the robot, either because
they were familiar with the airport, but mainly because they believed the robot would be more useful
for people not accustomed to flying (elderly) or with disabilities. When asked if they would find
SPENCER useful at an unknown airport they did indicate SPENCER would be useful.

Two participants believed SPENCER would be especially useful in the outer limits of the airport.
One participant had a recent experience at an airport abroad where she had missed her flight, and did
not receive any information. She indicated this would be an excellent use case for SPENCER as it
could tell passengers where to go, and even guide them to (f.e.) a transfer desk.

“No, we’re talking about Schiphol, and you have to understand that it’s one of best organized
airports in the world. Which means that for the people it is really easy to understand where to go, it’s
not like Heathrow or any other airport [...] So here it’s really easy, so perhaps the robot should give
more service in order to be sustainable.”

4.5.9 Improvements

Additional improvements highlighted by the participants include extra guiding services, such as the
ability of SPENCER to guide you to toilets and specific restaurants. Two participants mentioned that
a robot capable of carrying hand luggage would be convenient as well.

Five participants commented on the challenges of operating a robot in an environment as crowded
as Schiphol: three participants explicitly mentioned the stopping behavior should be improved, as the
robot currently stopped too sudden when encountering obstacles. Two participants suggested that it
might be better to test in a less-congested area.

Finally, two participants recommended that the function of the robot was somewhat unclear, and
that a dedicated place where the robot would be when idle (available for services) could be an im-
provement if and when SPENCER would be deployed.
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4.5.10 Summary of recommendations, lessons learned

In this section we have described results of a user study using both qualitative and quantitative data.
We have clustered answers from the interviews and drawn general conclusions related to several
themes, ranging from the behavior of the robot to usage scenario’s for robotic services at airports. To
summarize the findings from the user evaluations:

• Participants were generally happy with SPENCER’s guiding performance

• SPENCER can be described as friendly-looking, easy-to-use and reliable

• Shortcomings of the tested demonstrator robot are primarily related to the user interface (board-
ing card reader), and the abrupt stopping of the robot - the later as a safety precaution

• Participants frequently mentioned SPENCER being useful for people inexperienced with fly-
ing, or new to the particular airport

• Participants were of the impression that SPENCER improved their customer satisfaction

• Main improvements for SPENCER include technical improvements (stopping less for obsta-
cles) and extended use case improvements (such as guiding to shops and toilets)

5 Conclusion

In this report we have described the evaluation of SPENCER’s deployment at Schiphol airport with
respect to technical and user experience measures. During these two weeks at Schiphol, Spencer
drove 46 kilometers autonomously without major technical problems.

The technical components all worked well enough to conduct tests with real passengers in a
guiding scenario. With the exception of the abrupt stopping and the time it took to re-plan a path, no
technical failures occurred during the user studies. In general the participants were satisfied with the
performance of SPENCER.

During the project lifetime there were delays, for example to guarantee platform safety. These
delays led to a less elaborate use case, which was an aspect of the experience participants indicated
could be improved.

The user tests revealed that guiding by itself does not necessarily add to the customer experience
of traveler familiar with Schiphol Airport, rather that these travelers would appreciate additional ser-
vices which would technically be feasible but more content-specific. Examples include participants
who requested more information on (f.e.) shops, or a better user interface for the boarding card reader
are all aspects which were not specifically described in the original project plan, but turned out to be
important for the total user experience.

In general we conclude that we have succeeded in deploying a robotic demonstrator at Schiphol
Airport for the purposes of guiding transfer passengers. The robot worked within parameters as could
be expected for a demonstrator robot, and the user studies as conducted gave us new insights for
research on domestic service robots.
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Appendix A: User study with the Spencer platform in Freiburg
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ABSTRACT
In this paper we present a study where small groups of peo-
ple (N=69) followed the SPENCER robot for a guided tour
through a semi-public space. We manipulated the head di-
rection behavior of the robot. Our results show that par-
ticipants were satisfied with the appearance and behavior of
the SPENCER robot. The manipulation however did not
yield any significant di↵erences.
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1. INTRODUCTION
Social robots, and robots in general, come in all kinds of

forms and shapes. A social robot, operating autonomous or
not, di↵ers from a “regular” robot in they operate in an en-
vironmental specifically designed for humans. One feature
many social robots have in common is that they have a de-
sign which evokes certain anthropomorphism, e.g. people
attribute humanlike characteristics to the robot [6].

The SPENCER robot is an autonomous guide robot specif-
ically designed to provide services to transfer passengers at
international airports [21]. SPENCER has been designed to
be anthroporphised, e.g. it has a human-like head, with eyes.
As can be seen in Figure 1 the design features humanoid el-
ements, though it is not so humanoid that SPENCER elicits
too high expectations from users, nor that the appearance
is that humanoid that is would seem uncanny, e.g. the un-
canny valley theory [17].
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In our previous work we have investigated which direction
the head of a human robot should face when guiding a small
group of people, from this pilot we found a strong prefer-
ence for a forward-facing head [11]. However, that work was
limited in that the anthropomorphic design was very lim-
ited, and that hardware restrictions influenced the overall
evaluation of the robot.

The contribution of the research presented in this paper
is two-fold. First, we evaluate the SPENCER platform with
respect to it’s appearance and basic behavior capabilities in
a guiding task. This is the first evaluation conducted with
novice users. The second contribution of this research is
that we investigate to what extend the behavior of the head
during guiding results in a di↵erent evaluation of the robot
as found in our previous research.

In order to do so, we will first discuss related work (Section
2), followed by presenting a pilot study in which we tested
which head turn behavior is most appropriate. This head
turn was then implemented on the SPENCER platform, and
evaluated in a between-groups experiment. We will present
the method (Section 4) and initial results (Section 5) of this
experiment. We will conclude with a discussion of the results
found (Section 6).

Figure 1: The SPENCER robot
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2. RELATED WORK
In this section we will discuss related work on acceptance

of social robots (Section 2.1) and non-verbal communication
with robots (Section 2.2). We will end this section with the
hypotheses governing the design of the current study.

2.1 Acceptance of social robots
Fong et al. [7] distinguishes social robots from “normal

robots” by emphasizing on the fact that social interaction
plays a key role; they can autonomously interact with hu-
mans in a socially meaningful way. The following definition,
adapted from Bartneck & Forlizzi [2], will be used for social
robot:
“A (social) robot is a physically embodied machine which

is specifically designed to operate in a human environment,
and interact with humans, in ways deemed appropriate by
those humans the robot is intended to work with.”

The acceptance of social robots, and the factors influenc-
ing acceptance, have been studied in HRI literature. Exam-
ples include the work by Heerink [9], de Graaf [8] and Beer et
al. [4]. All these works identify (and test) possible variables
which influence the acceptance, or use intention, of social
robots. The work of Beer et al. [4] is a more general litera-
ture review with the goal of identifying factors which predict
acceptance of robots, whereas the works of Heerink [9] and
de Graaf [8] are more specifically focused on robots in do-
mestic environments. Beer et al. [4] defined three categories
of variables which potentially influence acceptance of robots,
these being function (control method, autonomy level), so-
cial capability (social intelligence, emotion expression and
non-verbal social cues), and appearance (human likeness,
form). Specifically relevant for the SPENCER project, de
Graaf [8] found social norms to be the core factor in the
proposed social robots acceptance model.

According to Breazeal [5] “the robot’s observable behav-
ior and the manner in which it responds and reacts to peo-
ple profoundly shapes the interaction and the mental model
people have for the robot”.

Based upon our proposed model we believe that the ac-
ceptance of social robots (or the evaluation of specific be-
havior) is dependent on several factors, most importantly
the appearance of the robot, which is mostly static, and
can be evaluated by examining the anthropomorphic design
of the robot in terms such as the perceived human likeness
and perceived anthropomorphism. The second major factor
of influence is the perceived social competence of the robot;
the perception of the actions of the robot.

2.2 Non-verbal communication with gaze
People communicate all the time. Merriam-Webster [16]

defines communication as “a process by which information
is exchanged between individuals through a common system
of symbols, signs, or behavior”, and while this also includes
language, there are more communication channels people
frequently use. Norris [19] poses that “all movements, all
noises and all material objects carry interactional meaning
as soon as they are perceived by a person”, under which
she clusters both verbal and non-verbal behaviors, but also
images. For Human-Robot Interaction (HRI) this implies
that also the appearance of a robot; for example the head,
communicates a certain message to people even before they
have started interacting by means of vocal or touch input.

In social-psychology, research has been conducted into

eye contact, and among other the functions of maintaining
eye contact. Argyle & Dean [1] summarize these functions,
which includes among others signaling that the channel is
open, information-seeking, and establishing and recognizing
a social relationship. Furthermore, it has been shown to im-
pact our image of others, and whether positive or negative,
this being a sign of potential social interaction [22].

Di↵erent types of social robots exist, and some robots have
heads and eyes as well. These eyes and heads are not neces-
sarily used for navigation and interaction as robots possess
other ways of sensing their environment. Eyes, and gazing
with those eyes, have however been shown to impact people’s
reaction to robots, and guide robots in particular. Karre-
man et al. [13] observed that people unconsciously perceive
cameras as eyes on robots, and when oriented at the point of
interest (instead of gazing at the guides) participants stood
closer to the robot. Similarly, when providing explanations
of artwork gazing at participants increases their evaluation
of the robot, though it did not improve recall of information
[12].

Robots can use non-anthropomorphic cues in di↵erent ways
than humans, e.g. in the guiding context they can display
route information rather than eyes. On the other hand, lit-
erature indicates that people use a combination of head and
eye movement to non-verbally indicate their walking direc-
tion [10] and users might expect robots to do the same; thus
directing their gaze ahead of them.

In HRI, two studies have investigated the direction of the
head while guiding, or driving to attract attention of peo-
ple. Shiomi et al. [20] conducted an experiment with the
Robovie robot which drove either forward or backward while
guiding participants in a mall (over a short distance). More
bystanders joined when the robot moved backwards com-
pared with frontwards, and that more people were inclined
to follow the robot the entire time when moving backwards.
In our own work [11], we asked people to follow a robot with
its head either directed to the front and back, and we found
a significant preference for a head turned forward. Unfor-
tunately both studies featured a di↵erent context (lab vs.
shopping mall), participants of two di↵erent cultures (Asian
vs. European). Furthermore, while we have an idea which
head direction people prefer from a guiding robot, we do
not know yet if such a robot would be perceived having a
di↵erent mental model, e.g. more or less competent.

2.3 Hypotheses
For this study we have the following hypotheses:

H1. The operationalization of the socially normative behav-
ior will be evaluated di↵erently; in particular participants
will perceive the socially normative robot as being signifi-
cantly more socially competent.
H2. Evaluation of the robot’s social competence is not de-
pendent on socially normative behavior, rather there is a
correlation with attitude towards robots in general.
H3. Evaluation of the robot’s social competence is not de-
pendent on socially normative behavior, rather there is a
correlation with the evaluation of the anthropomorphic de-
sign of the robot.

In order to test these hypotheses we will first conduct a
pilot study, which will result in one head turn behavior for
the SPENCER robot which is consider to be “normal”. This
behavior will then be implemented on the robot, and in the
subsequent experiment we will test our hypotheses.
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3. PILOT: PROTOTYPING A HEAD TURN
FOR SPENCER

In this section we present a pilot study. In our previous
work we found evidence that people following a robot have
a preference for a guide robot which looks ahead of them
when guiding [11]. One possible explanation could be that
people think the robot should face it’s driving direction, an
alternative explanation is that it might feel creepy to have
a robot driving backwards in general.

To select the most appropriate head turn for the SPENCER
robot we designed 16 head turns, which varied among two
“axis”: the type of the turn, and the angle of the turn, all of
which we will describe in Section. Inspired by, we created
short video sequences of the head turns which we distributed
through the CrowdFlower platform1.

3.1 Stimuli
We designed five distinct turn behaviors; which di↵ered

in the number of times the head would stop during a turn
(Figure 2). For example, in sequence A, the head would
first turn 180 degrees counterclockwise, stop, turn 15 degrees
counterclockwise, stop, turn 30 degrees clockwise, stop, and
turn back to the starting point. Other sequences, such as
sequence D, would only stop at one point.

The other manipulation we added was the number of de-
grees the head would turn, which could either be 0, 15, 30 or
45 degrees (Figure 2f). The 0-degree turn was only used for
sequence D, which would be a 180-degree turn. Therefore,
we created a total of 16 videos2, which were evaluated in a
within-subjects study.

Videos of each conditions were recorded using Unity. Each
video had a length between 10-12 seconds, and featured two
people following the robot. After two seconds, the robot
would start turning. We added a series of static objects to
the scene, so as to give participants the idea of a moving
robot.

3.2 Procedure
Participants were recruited through the CrowdFlower plat-

form, and invited to complete a SurveyMonkey question-
naire. Participation was limited to people from European
countries. The questionnaire consisted of general informa-
tion on the experiment and procedure. Following that, par-
ticipants were shown the 16 videos in a randomized order.
For each video participants were asked to indicate on a 7-
point semantic di↵erential scale how natural they believed
the head gesture of the robot was. Six control questions
were added, asking for specific details such as the colors of
the various objects, and the turning behavior of the robot.
Demographic questions such as gender, age, and nationality
were included at the end of the questionnaire, which in total
consisted of 27 questions. After completing the question-
naire participants were paid AC0.4 through the CrowdFlower
platform.

39 participants who failed to correctly answer at least
83.3% of the test questions were excluded from the sample.

3.3 Sample
A total of 29 participants completed the survey, and took

1http://www.crowdflower.com
2https://www.youtube.com/playlist?
list=PLXeBNyrOHCUG54cewvtaBgR57rUSv1ZNQ

Figure 3: Heatmap

on average 8 minutes to complete the survey. The sample
consisted of 19 males and 10 females, with an average age
of 38.1 (sd=11.9). Participants originated from Germany
(34.5%), the United Kingdom (17.2%), Austria (17.2%) and
the Netherlands (13.8%).

3.4 Results
Mean values for all videos are reported in Table 1 and

visualized in Figure 3. As can be seen from Figure 3, there
is a preference for turn sequence C at 30 degrees.

Based upon this rapid evaluation we propose to use se-
quence C30 for the SPENCER robot, which could be im-
plemented in the following way, as also visualized in Figure
2.

4. METHOD
In the previous section we conducted a pilot study, to in-

vestigate which head turn was perceived as most natural out
of a total of 16 head turns. With the current study we will
investigate whether people evaluate the social competence
of a guide robot higher when the robot acts with social nor-
mative behavior. We have conducted a between-subjects
experiment, where we recruited 29 small groups of people
who followed a guide robot, and afterwards completed an
post-experiment questionnaire.

4.1 Manipulation and apparatus
Wemanipulated the head behavior of the SPENCER robot

to be either socially normative or non-normative. Based
upon our pilot study we implemented a normative robot be-
havior sequence of the head, which consisted of the robot

Table 1: Mean values for each video show that sequence C30
was considered the most normal behavior

Seq-
uence

Head rotation angle mean score (sd)

0� 15� 30� 45�

A 4.9 (2.09) 5.24 (2.44) 4.55 (2.23)
B 5.55 (1.86) 5.31 (2.09) 4.72 (2.10)
C 5.59 (1.92) 5.86 (1.81) 4.07 (2.09)
D 4.48 (1.99) 5.38 (1.82) 5.52 (2.01) 5.52 (2.34)
E 4.79 (1.61) 4.76 (1.86) 3.76 (1.94)
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(a) (b) (c) (d) (e) (f)

Figure 2: Five turning sequences were designed for the study (Figures 2a-2e), each head turn sequence was implemented using
di↵erent turning arcs (Figure 2f).

Table 2: Two 25-second head rotation sequences were programmed on the robot

Normative
condition

Non-
normative
condition
Time 0 sec 16 sec 18 sec 19 sec 21 sec 23 sec 24 sec 25 sec

facing forwards, and turning it’s head backwards every 25
seconds. In the non-normative condition, the head faced the
participants, but turned left- and right every 25 seconds, just
like the normative condition.

The SPENCER robot is an autonomous guide robot with
a 2-DoF turning head, specifically designed to provide ser-
vices to transfer passengers at international airports [21].
Additional interaction capabilities are provided through it’s
touchscreen and boarding card reader; these capabilities were
not used in this experiment. SPENCER uses four RGD-B
cameras and two SICK LMS 500 laser scanners for naviga-
tion and obstacle avoidance. In this experiment, the robot
drove autonomously to five way-points.

4.2 Task and procedure
The experiment was conducted in a public hallway of an

education building. Recruited participants were informed of
the goal of the SPENCER robot, and that we were in the
final phase of product development. We further told partic-
ipants that we were interested in their input and feedback
on some of the behaviors of the robot. To do so, partici-
pants followed the robot while it drove two laps around the
hallway and fill out a post-experiment questionnaire after-
wards. Participants followed the robot for about 4 minutes

Table 3: Average task- and robot performance metrics for
each trial

Mean Sd
Distance 178.33 m 2.275 m
Time to completion 273 sec. 52 sec.
Speed 0.67 m/s 0.095 m/s

(M=273 seconds, SD=52 sec.), see also Table 3).
After having signed a consent form, the experimenter con-

firmed the experiment procedure once more. Following this
check, the robot started navigating through the hallway
(Figure 4). Having followed the robot through the hallway,
participants were asked to complete a pen-and-paper based
questionnaire consisting of both closed and open questions
(Section 4.3).

After having completed the questionnaire all participants
were debriefed, in which any remaining questions of the par-
ticipants were answered. The total duration of the experi-
ment was about 15 minutes. Participants were paid AC5 for
participating in the experiment.

4.3 Measures
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Both objective and subjective measures were collected
during the experiment.We annotated the videos collected
through the rear-facing RGD-B cameras (Figure 5, Section
4.3.1) and we collected participants’ subjective feedback through
a questionnaire (Section 4.3.2).

4.3.1 Video data
Video data of all experiment trials were collected through

2 cameras mounted on tripods, each recording a section of
the hallway (Figure 4), and 2 rear-mounted RGD-B cameras
on the robot, recording (part of) the group (Figure 5). Given
that these data were recorded from a moving platform, not
all participants were always visible. We describe our data
analysis method for this particular measure in more detail
in Section 4.5.

4.3.2 Questionnaire
A 50-item questionnaire consisting of both open and closed

questions was designed to measure participants’ user experi-
ence. Trust in the robot was measured through the compe-
tence (6 items, ↵=0.658) and goodwill (6 items, ↵=0.692)
constructs of the Source Credibility Scale [15]. The per-
ceived anthropomorphism (5 items, ↵=0.583) and likeability
(5 items, ↵=0.811) scales were used to assess [....] [3].

Attitude towards robots was measured through the NARS
[18] interaction with robots (6 items, ↵=0.657) and social in-
fluence of robots (4 items, ↵=0.675)3 subscales. Both expe-
rience with robots and engagement were measured through
one question, and satisfaction with the robot was measured
through 3 7-point Likert scaled items (↵=0.795) based on
[14]. Three open questions inquired whether participants
had any further comments and / or suggestions for improve-
ment.

Eight demographic questions provided us with informa-
tion on participants gender, age, study program and flying
experience. Finally, four open questions assessed:

1. What did you like about the robot’s behavior?

2. Do you have any comments and/or suggestions regard-
ing the behavior of the robot if it were to guide you at
an airport?

3Item “I feel that in the future, society will be dominated
by robots” removed

Figure 4: 29 groups of 2-3 persons followed the SPENCER
robot

Table 4: 68 participants, divided over 29 groups (between
brackets) participated in a between-groups experiment

Condition 2p. group 3p. group Total
Normative 22 (11) 15 (5) 37 (16)
Non-normative 16 (8) 15 (5) 31 (13)

3. Would you consider the robot, as you saw it right now,
to be a socially aware robot?

4. Which aspect of the guiding do you think should be
improved before deploying this robot at an airport?

4.4 Participants
Small groups of 2 and 3 people were recruited in a public

building of the Computer Science faculty of the University
of Freiburg. A total of 72 participants participated in the
experiment, however, due to technical issues with the robot
two groups had to be removed from the sample. The final
sample consisted of 68 participants, divided over 29 groups
(Table 4).

The participants had a mean age of 24.56 (SD=3.861);
73.5% of the sample was male, 26.5% female. Most par-
ticipants had the German nationality (64.7%), followed by
Russian (5.9%), Chinese (4.4%) and Indian (4.4%) partici-
pants. 48.5% of the participants had a background in Com-
puter Science, other participants generally had a technical
background as well, such as from the field of Embedded
Systems Engineering (14.7%) and Microsystems Engineer-
ing (16.2%).

Participants’ experience with robots was high: 23.5% indi-
cated they had seen robots before, 19.1% of the participants
previously worked with robots, and 50% indicated they pre-
viously built or programmed robots themselves.

4.5 Data analysis
Internal reliability for all subjective scales were acceptable

(see Section 4.3.2). Due to the questionnaire being admin-
istered on paper the sample contained 12 missing values. In
order to carry-out list-wise comparisons we have replaced
these with the means of the respective variable for the pur-
pose of this report.

In order to test for normality a Kolmogorov-Smirnov tests
was conducted. All dependent variables were normally dis-

Figure 5: Video data captured through the aft-facing RGB-
D cameras
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tributed, with the exception of the NARS Interaction sub-
scale. Therefore, in general, we will conduct t-tests and
ANOVA’s to test our hypotheses. For the NARS Interaction
subscale we will conduct Kruskall-Wallis and Mann-Whitney
tests instead.

We categorized all answers to the open questions into cate-
gories. Some participants chose not to answers one or multi-
ple open questions, while others provided multiple answers.
Therefore we use percentages to show di↵erences between
the two conditions (Tables 5 - 8).

Engagement was coded by two coders (17% of the data).
For each participants we coded when he/she was visible, and
whether or not he/she seemed to pay attention to the robot.
We finally calculated the users’ engagement as a percentage
of the time he/she was visible.

Data from the SICK laser scanners was used to calculate
mean distance between the participants and robot. During
the experiment we observed that participants did not always
understand the intention of the robot when turning, there-
fore we only analyzed the distances at the straight paths
(Figure 6).

5. RESULTS
In this section we will discuss report the results for each

of the three hypotheses.

5.1 H1: The operationalization of the socially
normative behavior will be evaluated dif-
ferently

A series of t-tests showed that there was no significant
di↵erence between the two conditions on any of the depen-
dent variables, with the exception of the anthropomorphism
scale (t(62)=-3.867, F=.658, p=0.000); the robot in the
non-normative condition was perceived as more anthropo-
morphic.

Participants were not considered to be significantly more
or less engaged in the normative condition (M=78.5%, SD=13.47%)
compared with the non-normative condition (M=82.0%, SD=
14.98%), T (66)=-1.029, p=.307.

In the non-normative condition participants kept more
distance from the robot (Mdn=1.94m., SD=0.66m.) com-
pared to participants in the normative condition (Mdn=1.81m.,
SD=0.83m.), t(66)=-0.717, p=0.476. During the post-experiment
analysis we considered a potential e↵ect of group size on
the distance, and though dyadic groups walked closer to
the robot (Mdn=1.76m., SD=0.77m.) than triadic groups
(Mdn=2.01m., SD=0.71m.) this e↵ect was also non-significant,
t(66)=0.397 p=0.183.

From the answers of the first question; “What did you like
about the robot’s behavior?”, we gather that participants in
particular liked the obstacle avoidance capabilities and the
speed of the SPENCER robot (Table 5). In the normative
condition participants showed higher appreciation for the
head turning behavior as compared with the non-normative
condition, which provides partial support for H1.

5.2 H2: Evaluation of the robot’s social com-
petence is dependent on attitude towards
robots in general

We found significant negative correlations of “negative at-
titudes towards interaction with robots” on perceived com-
petence (r=-.303, p<0.05), and on goodwill (r=-.261, p<0.05).

Figure 6: Tracks showing positions of a robot (blue track)
guiding a 3-person groups. Highlighted area shows area
taken into consideration when calculating features (such as
distance)

Figure 7: Distance between the robot and 3 participants in
the same group. Note the highlighted areas of Figure 6 are
not plotted in this graph

DR
AF
T



Correlations between “negative attitudes towards social in-
fluence of robots” were non-significant.

Therefore, we partially accept H2, which stated that
the evaluation of the robot’s social competence is not de-
pendent on socially normative behavior, rather there is a
correlation with attitude towards robots in general.

5.3 H3: Evaluation of the robot’s social com-
petence is dependent on the anthropomor-
phic design of the robot

We found significant positive correlations of anthropomor-
phism on perceived competence (r=.258, p<0.05), and on
goodwill (r=.468, p<0.001). Additionally, we found signifi-
cant positive correlations of likeability on perceived compe-
tence (r=.482, p<0.001), and on goodwill (r=.607, p<0.001).

This provides strong support for H3, which stated that
the evaluation of the robot’s social competence is not depen-
dent on socially normative behavior, rather there is a corre-
lation with the evaluation of the anthropomorphic design of
the robot.

5.4 Open questions
When asked towards improvements for the SPENCER

robot (Table 6), participants indicated would have liked
to receive more feedback, for example route information
through a map and the progress of the tour. These two
categories, making up 43% of the comments have been im-
plemented on the user interface of the robot, but weren’t
used in the experiment.

Answers to the third questions mainly consisted of short
answers; these being“yes”,“no”and limited to short sentence
such as “He was aware of who he has to guide, so yes”. We
therefore categorized these answers, as shown in Table 7. It
seems that the SPENCER robot was seen as being “socially
normal” in general, and we did not see any di↵erences here
between the two conditions. However, there were a relative
large number of participants who did not provide an answer
to this questions (11.76%, 8 participants), therefore it could
be that the question was too di�cult (e.g. socially normative
being a subjective and potentially fuzzy concept).

The final open questions inquired towards capabilities of
the SPENCER robot which participants deemed should be
improved before being deployed in an actual airport environ-
ment. Answers were quite spread out, as can be seen in Ta-

Figure 8: There was no significant di↵erence between the
two conditions on any of the dependent variables, * indicate
significant di↵erence at p<0.01.

Table 5: Participants in particular liked the obstacle avoid-
ance capabilities of SPENCER; in the normative condition
participants showed higher appreciation for the head turning
behavior.

Category Non-
normative

Normative Total

(no comment) 2 (6.45%) 3 (8.11%) 5 (7.35%)
Obstacle avoid-
ance

9 (29.03%) 13 (35.14%) 22 (32.35%)

Head appearance 5 (16.13%) 7 (18.92%) 12 (17.65%)
Head checking
behavior

4 (12.9%) 14 (37.84%) 18 (26.47%)

Speed 8 (25.81%) 9 (24.32%) 17 (25%)
Robot appear-
ance

1 (3.23%) 1 (2.7%) 2 (2.94%)

(Smooth) move-
ment

2 (6.45%) 5 (13.51%) 7 (10.29%)

Get the job done 3 (9.68%) 0 (0%) 3 (4.41%)
Quiet mechatron-
ics / computers

3 (9.68%) 1 (2.7%) 4 (5.88%)

Total com-
ments

50 35 85

ble 8. Most participants suggested speed adaptation should
be implemented, followed by more feedback to the passen-
gers while they’re being guided, including a map and/or time
to arrival.

6. DISCUSSION & CONCLUSION
In this paper we presented a study in which we asked

small groups of people to follow the SPENCER robot in
order to receive feedback on the behavior of the robot in
an actual guiding situation. We explored two di↵erent be-
haviors, normative and non-normative behavior, which we
operationalized through the head of the robot.

Participants’ general subjective assessment of the robot
was rather positive: mean ratings for competence (M=4.90,
SD=0.762), goodwill (M=4.53, SD=0.888), and likeability
(M=5.61, SD=0.798) were the average of the 7-point Likert
scale. As expected, the negative attitude towards robot’s
subscales interaction (M=2.27, SD=0.885) and social influ-
ence (M=3.66, SD=1.271) received relative low scores. Self-
reported engagement was also high (M=5.66, SD=0.925).
This leads us to conclude that the SPENCER robot is a like-
able robot which conducts guiding tasks in an e↵ective way.
This conclusion is supported by the open questions, which
clearly show that participants appreciated the autonomous
navigation, including the obstacle avoidance module (Table
5).

Despite our expectations the manipulation with the head
direction did not necessarily lead to strong di↵erences on
the various items of the questionnaire, contrary our previ-
ous pilot study [11]. The open questions did reveal that the
head checking behavior in the normative condition was ap-
preciated by participants, though we can conclude that this
is not a necessary features for guiding. Therefore, the head
could be used for example only to convey the future driving
direction of the robot.

Improvements for the SPENCER robot are mostly related
to feedback and intention communication; features we delib-
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Table 6: As improvement SPENCER could have provided
more feedback, for example route information through a
map.

Category Non-
normative

Normative Total

(no comment) 4 (12.9%) 3 (8.1%) 7 (10.3%)
More accelera-
tion/deceleration

2 (6.45%) 2 (5.41%) (5.88%)

Communicate
(motion) intent

2 (6.45%) 2 (5.41%) (5.88%)

Faster turning
arcs

3 (9.68%) 1 (2.7%) (5.88%)

Feedback: map 5 (16.13%) 9 (24.32%) (20.59%)
Feedback:
progress

8 (25.81%) 7 (18.92%) (22.06%)

Feedback: audi-
tory

3 (9.68%) 7 (18.92%) (14.71%)

More fluent
movement

2 (6.45%) 2 (5.41%) (5.88%)

More interaction 4 (12.9%) 7 (18.92%) (16.18%)
Smooth path
planning

1 (3.23%) 0 (0%) (1.47%)

Speed adaptation 2 (6.45%) 3 (8.11%) (7.35%)
Total com-
ments

32 40 72

Table 7: 50% of the participants thought the robot was so-
cially normative, 30% thought the robot was not socially
normative.

Category Non-
normative

Normative Total

Unknown / no
answer

7 (22.58%) 1 (2.7%) (11.76%)

No 8 (25.81%) 13 (35.14%) (30.88%)
A bit / no 0 (0%) 1 (2.7%) (1.47%)
Neutral 0 (0%) 4 (10.81%) (5.88%)
More or less 1 (3.23%) 6 (16.22%) (10.29%)
Yes 15 (48.39%) 12 (32.43%) (39.71%)
Total 31 37 68

erately not incorporated in the current experiment, but have
been tested at the Schiphol Airport during a previous inte-
gration event.

To conclude: we conducted a between-groups experiment
where a robot guided small groups of 2-3 people in a semi-
public space, using one of two di↵erent behaviors - socially
normative, or non-normative. In general participants were
positive about the appearance and behavior of the SPENCER
robot, though we did not find di↵erences between the two
conditions.
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Table 8: Most participants suggested speed adaptation
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Feedback questionnaire SPENCER robot 

Thank you for your interest in the SPENCER robot. SPENCER is a KLM project is collaboration with the European 

Commission. The goal is to develop a robot that can guide passengers from A to B. With this survey we’d like to find out 

how this robot is being perceived, and which aspects of the robot could be improved. Thank you in advance for 

completing this questionnaire. 

At which airport did you start your journey? 

Which airport are you travelling to? 
How many times have you flown in the last 12 months? 

Including yourself, how many people are travelling in your immediate group? 

What is the chief purpose of your present trip? O Business O Pleasure 

Please indicate your level of agreement: 

Do you have a general interest in technology? O O O O O O O O 
Do you have an interest in robots? O O O O O O O O 
Was it easy to interact with Spencer? O O O O O O O O 
How satisfied were you with the information SPENCER provided? O O O O O O O O 
Did SPENCER react fast enough? O O O O O O O O 
Did SPENCER drive fast enough? O O O O O O O O 
Did you enjoy your experience with SPENCER? O O O O O O O O 
Did you understand where SPENCER was going? O O O O O O O O 
Did you receive enough feedback from SPENCER? O O O O O O O O 
Do you think SPENCER acted appropriately? O O O O O O O O 
Do you think SPENCER is friendly? O O O O O O O O 
Do you think the way the robot behaved was appropriate? O O O O O O O O 
Would you trust Spencer to guide you next time you have to transfer 
at an airport? 

O O O O O O O O 

Would this improve your satisfaction with KLM O O O O O O O O 

What is your gender? O Male O Female 

What is your age? 

If you have any further comments, please write them in this box (or at the back of this form) 

Thank you for completing this questionnaire and providing us with your input for our work. 

Feedback questionnaire Sunday



Feedback(questionnaire(SPENCER(robot(

Thank&you&for&your&interest&in&the&SPENCER&robot.&SPENCER&is&a&KLM&project&is&collaboration&with&the&European&
Commission.&The&goal&is&to&develop&a&KLM&robot&that&offers&assistance&in&the&airport.&With&this&survey&we’d&like&to&find&out&
how&you&experienced&the&robot,&and&which&aspects&of&the&robot&could&be&improved.&Thank&you&in&advance&for&completing&
this&questionnaire.&

At!which!airport!did!you!start!your!journey!today?!

Which!airport!are!you!travelling!to?!

Including!yourself,!how!many!people!are!travelling!in!your!immediate!group?!

Is!your!trip!for!business!or!pleasure?! O! Business O! Pleasure

To(what(extend(do(you(agree(with(the(following(statements:!

I!think!the!robot!is!very!likeable! O! O! O! O! O! O! O!
I!think!the!robot!has!an!appealing!design! O! O! O! O! O! O! O!
I!think!the!robot!is!intelligent! O! O! O! O! O! O! O!
It!was!easy!to!understand!the!robot’s!intentions! O! O! O! O! O! O! O!
My!experience!with!the!robot!was!very!positive! O! O! O! O! O! O! O!
The!robot!is!unreliable! O! O! O! O! O! O! O!
The!robot!acted!appropriately! O! O! O! O! O! O! O!
This!service!improves!my!customer!satisfaction! O! O! O! O! O! O! O!
The!robot!functioned!well! O! O! O! O! O! O! O!
It!was!difficult!to!use!the!robot! O! O! O! O! O! O! O!

What!is!your!opinion!of!robots!in!general?! O! O! O! O! O! O! O!

What!is!your!gender?! O! Male O! Female
What!is!your!age?!

Having!followed!this!robot,!would!you!consent!to!us!using!the!
(video)data!collected!in!scientific!presentations!to!other!scientists?!If!
so,!please!sign!in!the!box!to!the!right.!

Thank(you(for(completing(this(questionnaire(and(providing(us(with(your(input(for(our(work.(

Neutral!

Not!at!all!

Very!much!so!

Very!negative!

Neutral!

Very!positive!
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