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Abstract

In this deliverable, we present the basic structure and the individual components of the integrated
on-line system for detailed multi-person analysis developed at RWTH. The goal of this system is to
perform a fine-grained analysis of persons detected and tracked by the different modules from WP2
with the aim of inferring their rough body posture, their head pose and viewing direction, and their
articulated upper-body pose. This information will be of use for the group-level analysis in WP4.

An early iteration of this multi-person analysis system was already sketched in D3.2. In this
deliverable, we now present the final version of the different system components, as well as the
architecture in which they interact.

1 Introduction

The goal of WP3 is to deliver detailed information about people in the close vicinity of the SPENCER
robot in order to enable the robot to interpret people’s current actions and interactions. We have al-
ready presented a first integrated prototype for this task in D3.2. In this deliverable, we now report on
an extended and improved version of this system that includes the final components for the different
estimation tasks to be used in the SPENCER deployment.

Figure 1 gives an overview of the data flow in our integrated multi-person analysis system. As the
SPENCER robot is moving through its target environment, people in its vicinity will be detected by
the RGB-D and laser based detection modules (green) and will then be tracked by the tracker module
(blue) from WP2. A planner module (yellow) selects tracks that are visible in the field of view of
the RGB-D sensors and for which the different analysis components shall give a detailed analysis
(red) of head pose (Sec. 2), rough posture (Sec. 3) and articulated upper body pose (Sec. 4). When
selected, each of those modules is passed a task-specific region extracted from the RGB-D video
input with fixed offsets relative to the bounding box provided by the tracker. Since each analyzed
detection bounding box is part of a person’s tracked trajectory, the information from our different
analysis modules is directly associated to an individual and can be integrated over time.

Compared to the first prototype version of this system in D3.2, we now have extended and im-
proved components for each of the analysis modules available that have also been optimized for
resource efficient real-time operation on the SPENCER robot. Each analysis module can be called
through ROS messages for a given detector/trackor bounding box and is then applied independently
from the others. In the following sections, we describe each of the modules in detail.

For two of the modules – the head pose estimation approach from Sec. 2 and the articulated upper
body pose analysis from Sec. 4 – research papers have been published during Y2 that we append
to this deliverable [1, 2]. In addition, Section 4.5 will give an outlook to a recently developed deep
learning component for body pose estimation which achieves very promising results and which may
eventually replace the current system component in a future iteration of the robot. We are currently
preparing an arXiv pre-publication of this approach that will be available in time for the SPENCER
Y3 review meeting.
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Figure 1: Overview of the data flow for detailed multi-person analysis. After the detection (green) and
tracking (blue) pipeline in RGB-D, a set of tracked persons is available. A planner module (yellow)
selects tracks for which the different analysis components shall give a detailed analysis (red) of head
pose (Sec. 2), rough posture (Sec. 3) and body analysis (Sec. 4). Of course, the analysis can be called
for all available tracks, but in case of computational constraints a subset might be selected. Criteria
for this selection process involve, e.g., the distance of the tracked person to the robot or whether the
person is facing towards or away from the robot.

2 Head Pose Analysis

2.1 Approach

As planned in D3.2, we have now replaced the “WARCO”-based [3] head pose classification mod-
ule by a novel regression module called “BiternionNet”, which we published at GCPR’15 [1]. A
BiternionNet is a deep convolutional neural network with a novel output layer specifically tailored to
the regression of orientations. This “biternion” layer is a projection onto the two-dimensional unit
circle, thus corresponding to the sine and cosine decomposition of an angle. Combined with a corre-
sponding von-Mises optimization criterion, this output layer was shown to be vastly superior to the
typically used one-dimensional regression and Euclidean distance criterion, as can be seen in Table 1
(in an evaluation on the TownCentre dataset from [4]).

In [1], we first showed that the deep network architecture used in BiternionNets surpasses the
performance of the original WARCO method on every single benchmark dataset in [3] (see Table 2).
We then further demonstrated that the biternion output layer makes it possible to learn a continuous
regression output (shown in Fig. 2) using only discrete 8-bin annotations, which are easy to create.
Finally, as is usual in deep-learning approaches, the implementation supports computation on the
GPU, thus freeing the load of all but one CPU core. The prediction-rate is real-time and almost
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Figure 2: Head pose regressions from our “BiternionNet” for an unseen person turning on the spot.
The horizontal axis represents time, the vertical axis the cosine of the predicted orientation.

Method MAE
Linear Regression 64.1◦±45.0◦
Naive Regression 38.9◦±40.7◦
Von Mises 29.4◦±31.3◦
Biternion 21.6◦±25.2◦
Biternion+Von Mises 20.8◦±24.7◦

Benfold&Reid [4] 25.6◦ / 64.9◦

Table 1: Quantitative regression results for the TownCentre dataset [4].

independent of the number of tracked people due to efficiently batched computation.

2.2 Interface

Over the course of multiple integration meetings, it has become apparent that the head pose estimation
module would be much more useful if it made predictions based on person tracks, as opposed to
upper-body detections as it did so far. The new BiternionNet component takes this into account and
gives predictions corresponding to tracks, i.e. the messages specified in perception/spencer_
tracking_msgs.

2.3 Adaptation for Schiphol Scenario

A few minor adaptations were necessary in order to run the BiternionNet approach in the Schiphol
deployment environment. Due to the unique lighting conditions at Schiphol, we needed to augment
the training set with additional examples. During the fourth integration meeting, we have therefore
recorded 18 people in large range of different orientations on-site, resulting in almost 9300 training
images. Because the tracker has a tiny lag, we had to crop heads to a size of 80 × 50 as opposed to
the 50× 50 as used in [1]. These wider crops include a considerable amount of background, making
training with limited data more difficult.

As an initial evaluation, we have trained a BiternionNet on the data collected at Schiphol and
looked at its predictions for a person not seen during training. Since the only labels we have are
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HIIT HOCoffee HOC QMUL
# Samples 12 000/12 007 9522/8595 6860/5021 7603/7618 9813/8725
# Classes 6 6 4 4 4 + 1
Tosato et al. [3] 96.5% 81.0% 78.69% 94.25% 91.18%
Lallemand et al. [5] - - 79.9% - -
Our CNN 98.70% 86.99% 83.97% 95.58% 94.30%

Table 2: Class-average accuracies on the four classification datasets from [3]. The sample counts
refer to the provided train/test splits. We obtain state-of-the-art results on all datasets.

8-bin class-labels (see [1]), we discretize the predictions for the purpose of the evaluation and look
at the classification error. With this setup, the network reached an average accuracy of 64.5% over
four clips of that person. When also accepting the orientation segments neighboring the ground-truth
label as correct in order not to penalize class overlap, the BiternionNet reaches a respectable average
accuracy of 96.8%. (Note that the BiternionNet is not optimized for classification performance; it is
just the only way we are able to measure performance given the available labels). Those results show
that the Biternion net already learns a good representation, but that its performance can probably still
be further improved through a better adaptation to the Schiphol scenario.

In the remaining time before the final deployment, we will therefore further extend the training
set by additional examples collected in Schiphol with the child stroller setup during a previous visit
(see D3.1), taking the available track annotations as an indirect cue to predict likely head orientations
(similar in spirit to [4]). In addition, we are currently working on a background-subtraction pre-
processor to ease the network’s learning, in particular with respect to the less accurate alignment.

3 Rough Posture Analysis

In the same way in which BiternionNets replaced the previous head-orientation module, we believe
they also lend themselves very well to the estimation of full-body orientation. All that is necessary
is a small change in the architecture, since full-body images have a vastly different aspect-ratio than
heads. Besides this minor change, we can essentially reuse all components developed as well as all
data collected for the head-pose component.

We have verified this idea by comparing BiternionNets to the “WARCO” approach on the HOC
dataset from [3], which contains fully-body person detections similar to our application scenario. As
Table 2 shows, BiternionNets indeed perform better. We therefore propose to use BiternionNets also
for body orientation and coarse posture analysis.

3.1 Adaptation for Schiphol

The main issue with adapting BiternionNets for pose estimation is to collect a sufficient amount of
training data under the specific conditions of the application scenario. We are currently in the process
of preprocessing and annotating our Schiphol recordings for full-body orientation.
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3.2 Interface

We decided to move the prediction onto the output of the tracking system as opposed to detections,
for the same reasons mentioned in Subsection 2.2.

4 Detailed Body Pose Analysis

The task of the detailed body pose analysis module is to estimate a given person’s articulated body
pose (in terms of a set of 3D skeleton joint positions) from depth images.

4.1 Regression Forest Approach

As already described in D3.2, we have implemented a regression framework for pose estimation that
is based on regression forests [6]. Briefly stated, this approach uses depth information of all the pixels
belonging to a person and predicts a non-parametric distribution over 3D position of each body joint
belonging to the upper body of a person. At test time each tree in the regression forest considers
the neighborhood around a depth pixel q. At each internal tree node, it evaluates a binary splitting
function based on the pixel’s neighborhood using the depth comparison features from [7]. Depending
on the outcome of this splitting function, evaluation proceeds to the left or right child node. Once a
leaf node is reached, votes are cast for possible locations of the all upper body joints according to the
vote distributions stored at the node.

This approach provides good pose estimates as long as people are fully visible and well sepa-
rated from each other, but similar to the original work from [6], it quickly breaks down when scene
occlusions occur (which will often be the case in the SPENCER airport scenario). We have there-
fore extended the pose estimation approach for explicitly handling occlusions. The main idea behind
our proposed extension, called Occluder Aware Regression Forests (OARF), is to learn the depth
appearances of common occluders along with the depth appearance of body parts, so that we can
(a) distinguish those occluders from regular body parts (and thus avoid false positive matches) and
(b) use the known occlusion patterns to predict the 3D positions of occluded joints. This extension
was also already initially described in D3.2 and has led to a publication at the CVPR’15 ChaLearn
Workshop [2], which we append to this deliverable.

Figure 3 shows some qualitative results of OARF on example images from our test set, com-
pared to the joint predictions delivered by the Kinect SDK. We present results using two different
versions of OARF: one that has been trained to recognize different categories of occluders (“OARF
with semantics”, top row) and one that does not differentiate between occluders (“OARF without se-
mantics”). As can be seen from those results, OARF can achieve better pose estimation results than
the Kinect SDK in occluded cases. This finding was also verified in quantitative experiments in our
appended paper [2].

Altogether, those results are very encouraging. They show that the OARF idea clearly has poten-
tial to improve body pose estimation accuracy under occlusion.
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Figure 3: Qualitative results for some sample images taken from our real test set [2]. Top row shows
the body joints predicted by OARF with semantics. Middle row shows the body joint predictions
from OARF without semantics. Bottom row shows the body joints predicted by the Kinect SDK. The
results show that integrating knowledge about occluding objects helps in improving the body joint
prediction performance for the occluded joints.

4.2 Random Walk Forests

Still, the regression forest based approach for detailed Body Posture Analysis described in the previ-
ous section has two major limitations, particularly with respect to its use in SPENCER project.

First, it requires well segmented persons as a preprocessing step to provide detailed body posture
analysis which is not feasible for the scenarios encountered in SPENCER project. In SPENCER,
the only available option for person segmentation is the output of the upper body detector, which
only provides a bounding box around head and shoulders. This input is very limited, as it does not
contain any information about the segmentation of upper body limbs, and thus the regression forest
performs poorly for predicting the 3D positions of joints belonging to upper body limbs. Second,
our efficient implementation of the approach relies on parallel computation using either a GPU or a
multi-core CPU which makes it less feasible for SPENCER, where the hardware resources are very
much constrained. For these reasons, we propose to use a simpler approach instead, inspired by a
recent publication of [8]. This new approach, based on Random Walk Forests, is extremely fast, runs
on a single CPU core, but is still very effective.

A Random Walk Forest consists of regression trees, where each tree is trained to be an expert on
a single body joint only. Given a random position on the upper body, each tree outputs a direction
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Figure 4: Qualitative results for some frames selected from the Schiphol data.

where a particular joint could be located. Then a step is taken in that direction on the upper body with
a certain step size, resulting in a new position on the upper body. This procedure is repeated a for a
number of steps. The final joint position is then the expected value of all the positions reached during
this procedure. The number of iterations and the step size are hyper-parameters, which are learned by
cross validation.

Each tree is trained on the set of training samples Q = {(q, o,D, uj)}, each consisting of a
sampled pixel q in a training image D, its offset o to joint j and a unit direction vector uj to the joint j
from pixel q. This direction vector is computed as uj = (pj−o)/‖pj−o‖ where pj is the 3D position
of joint j. During training of each regression tree, the training pixels q at a split node are partitioned
into left and right subsets by using the depth comparison features from [7] and the quality of the
split is measured using the information gain criteria and the best split is selected. This procedure is
continued until the maximum allowed depth for a tree is reached. In order to insert randomness into
direction selection, all the pixels q that have reached a particular leaf node l are further clustered using
mean shift clustering. Then during inference a cluster center is chosen randomly.

During inference, a test pixel q is traversed through the tree until it reaches a leaf node l, where
a direction vector uj to joint j is randomly selected. Then by using the learned step size dists a new
pixel q is chosen that is again traversed through the same tree to get a new direction. This procedure
is repeated N times. The final joint position is the expectation of the random walk q̂.

4.3 Evaluation on SPENCER data

The property of the Random Walk Forest (RWF) approach that it only requires a single point on the
upper body and not already a detailed segmentation including limbs makes it very attractive for use in
the SPENCER scenario, where we can use the center of an upper body detection as a starting point.

We evaluated RWF on the SPENCER data recorded at Schiphol Airport. Some qualitative results
are shown in Figure 4. The results are produced by only applying RWF on a frame-by-frame basis and
without using any limb-length and temporal smoothing constraints. We trained our RWF models by
using synthetic data that was generated by the procedure described in D3.2. As we do not have upper
body skeleton ground truth annotations available for Schiphol data yet, we cannot report quantitative
results for this scenario at this point. Qualitatively, the results look already very promising, though,
and we expect that they will further improve through the planned addition of limb length and temporal
smoothing constraints.
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4.4 Interface

The current ROS node for upper body skeleton subscribes to the following messages :

/spencer/perception_internal/people_detection/rgbd_rear_top/upper_
body_detector/detections

/spencer/perception_internal/people_tracking/rgbd_rear_top/tracked_
persons

/spencer/perception_internal/people_tracking/rgbd_rear_top/tracked_
persons_2d

The goal here is to have a priority mechanism that automatically selects people for which upper
body skeletons should be provided by fusing information from incoming messages. For example, in
an airport scenario, an input frame may contain many people, but the most important ones are those
that are walking towards the robot and are close to the robot. Therefore, the ROS node for upper
body skeleton estimation has an implicit perception controller that assigns priority to people based on
information received from incoming messages (currently position and orientation of people provided
by the people tracker) and that passes the prioritized upper bodies to the upper body skeleton detector
to get skeletons.

As output, the upper body skeleton detector provide a list of 3D positions of 9 upper body joints,
namely head, neck, shoulders, elbows and wrists. The upper body ROS node publishes
the following message

/spencer/perception_internal/detailed_upper_body_analysis/rgbd_rear_
top/upper_body_skeleton

4.5 CNN based Skeleton Detector

A limitation of the RWF approach introduced in Section 4.2 is that it uses very weak hand-crafted
features that are very fast to compute but require large amounts of training data to generalize well.
In recent years, Convolutional Neural Networks (CNNs) have achieved impressive results for differ-
ent computer vision problems. This is mainly due to their ability to learn hierarchical features that
generalize well in many situations.

In order to leverage those advantages, we have started work on a CNN-based body pose estima-
tion approach that is already producing very promising results. While this approach will not be ready
for real-time operation on the SPENCER robot until the end of the project, it will provide an excel-
lent basis for follow-up work that will lead to vastly improved visual capabilities for a future robot
deployment.

Our approach is based on the Inception deep network architecture by [9], augmented with skip-
layer fusion. We set up the network to produce output heat-maps for each joint. Formally, the network
takes an input image I and produces a fixed-size i× j × k cube as output, where k is the number of
joints in the upper body. The network is trained on training data N = {I, y}, consisting of training
images I with heat-maps y. During training, we minimize the mean squared error between ground-
truth heat-maps y and predicted heat-maps ŷ. We make several improvements in the network design
and training pipeline that lead to improved performance.
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Average Joint Accuracy

Ours Tompson et al [11]

Joint

Wrists 74.1% 63.4%
Elbows 78.6% 67.9%
Shoulders 85.4% 79.2%
Hips 85.2% 69.5%
Head 95.1% 90.6%
Knees 81.1% 71.0%
Ankles 77.7% 64.2%

Overall 82.5% 72.0%

Table 3: Per joint detection accuracy of 2D body joint predictions on the LSP dataset [10], measured
using the strict evaluation measure from [12] with an error threshold of 0.2% of the upper body size).

In order to assess its performance, we evaluate our Deep CNN based skeleton regressor on the
standard benchmark for 2D Human Pose Estimation, the “Leeds Sport” dataset (LSP) [10]. As Table
3 shows, even this early version of our approach already significantly outperforms the current state-
of-art results by [11] using the strict pck evaluation measure from [12]. Some qualitative results are
also shown in Figure 5. As can be seen from those examples, our approach achieves accurate results
for a variety of poses and under vastly different lighting conditions (something that will be especially
relevant for SPENCER). We are currently preparing an arXiv pre-publication on this work that will
be available in time for the SPENCER review meeting, with plans of later submitting it to a vision
conference.

5 Conclusion

In this deliverable, we have presented an integrated on-line system for detailed multi-person analysis
for use in SPENCER. Our system comprises three component modules for head pose, coarse body
posture, and articulated body pose estimation. Integration is achieved through well-defined interfaces
with ROS message definitions that allow a perception planner module to pass tracked person bounding
boxes to the detailed analysis modules for further processing. Each of the component modules has
been evaluated on task-specific datasets and we have verified that each module achieves a sufficient
performance level for this integration.

In the remaining weeks until the Y3 review meeting, we will use the data from the latest record-
ing sessions at Amsterdam Schiphol airport in order to create adapted training sets that will further
improve performance of the different analysis modules in the Schiphol scenario.
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Figure 5: Qualitative upper body pose estimation results for some images from the LSP dataset [10].

References

[1] Lucas Beyer, Alexander Hermans, and Bastian Leibe. Biternion nets: Continuous head pose
regression from discrete training labels. In Pattern Recognition, Proceedings of GCPR 2015,
volume 9358 of Lecture Notes in Computer Science, pages 157–168. Springer, 2015.

[2] U.Rafi, J.Gall, and B.Leibe. A Semantic Occlusion Model for Human Pose Estimation from a
Single Depth image. In CVPR15 Chalearn Looking at People Workshop, 2015.

[3] D. Tosato, M. Spera, M. Cristani, and V. Murino. Characterizing Humans on Riemannian Man-
ifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1972–1984,
2013.

[4] Ben Benfold and Ian Reid. Unsupervised Learning of a Scene-Specific Coarse Gaze Estimator.
In International Conference on Computer Vision, 2011.
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Biternion Nets: Continuous Head Pose
Regression from Discrete Training Labels

Lucas Beyer, Alexander Hermans, and Bastian Leibe

Visual Computing Institute, RWTH Aachen University

Abstract. While head pose estimation has been studied for some time,
continuous head pose estimation is still an open problem. Most ap-
proaches either cannot deal with the periodicity of angular data or re-
quire very fine-grained regression labels. We introduce biternion nets, a
CNN-based approach that can be trained on very coarse regression labels
and still estimate fully continuous 360◦ head poses. We show state-of-the-
art results on several publicly available datasets. Finally, we demonstrate
how easy it is to record and annotate a new dataset with coarse orienta-
tion labels in order to obtain continuous head pose estimates using our
biternion nets.

1 Introduction

The estimation of head poses is an important building block for higher-level
computer vision systems such as social scene understanding, human-computer
interfaces, driver monitoring, and security systems. For many of these tasks, a
continuous head pose angle is arguably more useful than few discrete orientation
classes as yielded by most current head pose systems [8,34,4].

While many face pose and gaze estimation methods have been covered in
the literature, the task of regressing head pose is distinctly different in that it
also handles people not facing the camera, resulting in poses spanning the full
360◦ spectrum. Thus, head pose estimators need to be able to cope with the
periodicity of angular data, i.e. the fact that 361◦ corresponds to 1◦ and, for a
head pose of 0◦, a prediction of 359◦ is no worse than a prediction of 1◦. Face
pose and gaze estimators can conveniently sidestep this difficulty by constrain-
ing the prediction range to non-periodic intervals such as [−90◦, 90◦]. Another
difficulty in learning a head pose regressor lies in obtaining enough training data
with accurate regression labels [6,11]. All publicly available datasets, except [5],
are either restricted to coarse orientation bins, or to the range of front-facing
poses [6,14,2,15,9,10].

A multitude of approaches [25,32] has been proposed which solve only one
of the two aforementioned problems: either they cannot cope with periodic-
ity [26,24,34], or they need fine-grained regression data [35,33,16]. Since none
of this is satisfactory, we propose a principled approach to solve both problems
simultaneously.

Our approach is based on convolutional neural networks (CNNs), for which
we propose a novel output layer embedding an angle into two dimensions, coupled
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with a fitting cost function. It is able to handle fully periodic, continuous regres-
sion while only requiring coarse, discrete class-labels as training data, which are
easily obtainable from video recordings. We call our approach biternion nets.
Before demonstrating the effectiveness of the biternion output layer, we validate
our CNN architecture on several publicly available datasets and show that it
yields state-of-the-art results.

In summary, our contributions are threefold: (1) We present a CNN archi-
tecture that outperforms state-of-the art results on several public head pose
datasets. (2) We propose a novel combination of output layer and cost func-
tion to elegantly solve the problem of periodic orientation regression, which we
call biternion nets. (3) We show that we can learn continuous head-pose regres-
sion from discrete training labels. To demonstrate this, we present continuous
regression results obtained from a biternion net trained on data recorded and
annotated in less than two and a half hours.

2 Related Work

Head pose estimation has been a very active research field for the past 20
years [32,25]. Over time, authors have developed many different methods to
approach this problem. The probably most popular direction is the functional
mapping of images to a feature space where classifiers or regressors can directly
be applied. These mappings range from simple gradient-based features [24,7,21],
over covariance features [34], to learned functional mappings [26,33,4]. These
approaches often result in a manifold embedding of the images [26,34]. However,
if training data is sparse, it is hard to ensure the quality of these manifolds [19].
Another approach is to find facial landmarks, such as eye and mouth locations,
and use these to determine the pose of a face [9]. It is also possible to use track-
ing information to get a good prior for the head pose [7,10]. Here, interactions
between the body pose and the head pose can be exploited [5,8]. Several of these
techniques have also been used for objects such as cars or chairs [33,28,18].

While some of these approaches work on high resolution images [14,2,10,12],
the majority of them is based on low resolution images [26,24,5,34]. With the
recent availability of cheap RGB-D sensors, depth information has also been
used to improve head pose estimation [12].

The high activity within this field has resulted in a large number of different
datasets for head pose estimation [6,14,2,1,15,5,34,9,10], most of which are face
pose rather than head pose datasets and often only contain sparse head poses
and fairly coarse orientation labels. As we are interested in continuous head pose
estimations, most of these datasets are not suitable for our experiments.

Based on the available datasets, most approaches focus on coarse face poses,
while only few head pose estimation approaches and datasets exist [35,5,34]. Wu
and Toyama [35] estimate gradient distributions from 1024 different viewpoints
and match new views to the nearest viewpoint to determine the pose. Benfold and
Reid [5] use the walking direction obtained from unsupervised people tracking in
a video sequence to train a regression forest for the head pose. Tosato et al . [34]
use covariance features to classify head poses into a small set of orientation bins.
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CNNs have also been used for orientation estimation before. Qi [28] fine-
tunes a large pre-trained CNN to classify the orientation of chairs using a large
amount of rendered chairs with precise labels. However, using CNNs pre-trained
on ImageNet for low-resolution head pose estimation makes no sense due to
the significantly different filter resolution, type of data, and learning task. Most
similar to our approach is the one by Osadchy et al . [26], which also uses a CNN
for continuous head pose estimation. They learn a face manifold on (non-public)
data with regression labels, which enables them to jointly detect and estimate
the pose of faces. In contrast to us, they focus on using face pose data to improve
face detection and do not address the periodicity problem.

Some approaches also aim at solving the periodicity problem [33,16,18]. How-
ever, their approaches are typically based on nearest-neighbor matching or kernel
density estimation, meaning that they require dense orientation labels for train-
ing. All three of the above approaches use fine grained face datasets [14,1] and
it is unclear how well they could perform for head pose estimation.

To the best of our knowledge, only Huang et al . [19] aim at learning con-
tinuous regressors from a discrete face pose dataset. They learn a mixture of
local tangent subspaces that are robust to regression regions with bad coverage
in the training set. Their representation is based on HOG features and they use
high resolution images. It is questionable whether their approach can deal with
head poses, as HOG features are not very expressive for the back of a head.
Furthermore, they do not evaluate how continuous their regression really is.

In conclusion, based on existing approaches, the task of continuous periodic
head pose estimation is still unsolved. Here our approach comes into play.

3 CNNs for Head Pose Estimation

Throughout this paper, we work in the framework of deep convolutional networks
and stochastic, gradient-based optimization. In this section, we present the spe-
cific network architecture we use for all experiments, changing only the output
layer and cost function to match the task at hand. We then apply it to multiple
publicly available datasets, consistently outperforming current state-of-the-art
methods on those datasets.

3.1 The Network Architecture

We use a moderately deep, batch-normalized [20], VGG-style network architec-
ture [30] consisting of six convolutional layers with 24, 24, 48, 48, 64 and 64
feature channels, respectively, followed by a single hidden layer of 512 units,
and train it for a fixed duration of 50 epochs in all our experiments. For all
details about the network and the training procedure, please refer to the sup-
plementary material. We implemented the network in Theano [3] using IPython
notebook [27]. All numbers reported within this paper are averages over five
runs. While we will show that this architecture already performs very well, it is
likely possible to reduce the error even further by using deeper networks with
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Table 1: Class-average accuracies on the four classification datasets from [34].
The sample counts refer to the provided train/test splits. We obtain state-of-
the-art results on all datasets.

HIIT HOCoffee HOC QMUL

# Samples 12 000/12 007 9522/8595 6860/5021 7603/7618 9813/8725
# Classes 6 6 4 4 4 + 1

Tosato et al . [34] 96.5% 81.0% 78.69% 94.25% 91.18%
Lallemand et al . [21] - - 79.9% - -
Our CNN 98.70% 86.99% 83.97% 95.58% 94.30%

more careful regularization and a bag of other well-known tricks [23,13,36,29,17].
We do not further go down that road, since the goal of this section is simply to
demonstrate the suitability of CNNs in general, and our architecture in partic-
ular, for predicting head poses on low-resolution images.

3.2 Experimental Validation

We use the collection of datasets provided by Tosato et al . [34] to validate our
approach. First, we show results on those datasets that treat pose estimation
as a classification task in Table 1. These datasets contain very rough pose bins,
such as Front, Back, Left and Right, with the addition of FrontLeft and
FrontRight for HIIT and HOCoffee, and Background for the 5-class version of
the QMUL dataset.

In this case, the network’s output layer is a softmax-layer and the cost being
optimized is the negative log-likelihood. While the accuracies obtained by state-
of-the-art methods are already high, we show that our CNN architecture achieves
a significant improvement as it reduces the error by about a third across all
datasets.

We next turn to the datasets with continuous regression labels. Statistics
about the datasets are shown in Table 2, together with our results. The IDIAP
Head Pose dataset, which stems from a video recording of few people in a meet-
ing room, has a very restricted range of angles; specifically, 94 % of the pan
angles lie within the rather narrow, front-facing range of [−60◦, 60◦]. For this
experiment, the output of our network is computed by a fully-connected layer
with three outputs and the cost function is the mean absolute deviation. This
simple approach to pan-tilt-roll regression outperforms the state-of-the art in all
three dimensions. Please note that with a linear output layer and the MAD cost
function, the network does not learn the pan, tilt and roll angles jointly; they
merely share a common feature representation.1

The CAVIAR dataset comes in both a clean version containing only fully-
visible heads, and an occluded version containing only partially-occluded heads.
While they do come in the full range of angles, almost 40 % of the training
samples lie within ±4◦ of the four canonical orientations. A major downside of

1 This becomes evident by computing the derivatives of the cost w.r.t. the parameters:
the tilt and roll terms are absent from the derivative w.r.t. the pan and vice-versa.
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Table 2: A comparison to two regression datasets from [34]. The first number is
the mean absolute angular deviation, the second its standard deviation across
test-samples. We obtain state-of-the-art results on all datasets.

IDIAP Head Pose CAVIAR-c CAVIAR-o

# Samples 42 304/23 991 10 660/10 665 10 802/10 889

Pose range
pan tilt roll pan pan

[-101,101] [-73,23] [-46,65] [0, 360] [0, 360]

Tosato et al . [34] 10.3◦±10.6◦ 4.5◦±5.3◦ 4.3◦±3.8◦ 22.7◦±18.4◦ 35.3◦±24.6◦

Ba & Odobez [2] 8.7◦±9.1◦ 19.1◦±15.4◦ 9.7◦±7.1◦ - -
Our CNN 5.9◦±7.2◦ 2.8◦±2.6◦ 3.5◦±3.9◦ 19.2◦±24.2◦ 25.2◦±26.4◦

this dataset is that most images have been upscaled to 50-by-50 pixels from their
original size of, on average, 7-by-7 pixels. We still perform the comparison for
the sake of completeness, and our network manages to beat the current state-of-
the-art on such a difficult dataset.

These experiments show that the network architecture we use forms a solid
basis by itself and we can now use it to further investigate continuous, periodic
orientation regression.

4 Periodic Orientation Regression

None of the datasets in the previous section really uncover a crucial problem for
full head-orientation regression: periodicity. We can demonstrate that this is a
real problem by adding 360◦ to all negative pan values of the IDIAP dataset.
With this semantically identical dataset, the exact same (naive) network used
in the previous section becomes very unstable and only reaches errors of 12.9◦,
4.5◦ and 5.3◦ for pan, tilt and roll, respectively.

For memory-based models such as k-NN and kernel-methods, periodicity only
plays a role during the voting part of the algorithm, where it can easily be solved
by a modulo operation. But this kind of model suffers from the inherent need of
fine-grained training data, hence our focus on parametric models.

For parametric models such as CNNs, periodicity may cause problems in two
different ways: (1) The cost function to be optimized is unaware of the fact that
a prediction of 359◦ for a ground truth orientation of 0◦ should incur the same
loss as 1◦. Unfortunately, simply applying a mod operator to the output of the
network results in a discontinuous error function that can no longer be optimized
robustly. (2) A regression output which results from a matrix-vector product,
such as performed in most parametric models, is an inherently linear operation,
while we ideally want a circular output.

Our biternion approach solves both of these problems in an elegant way.

4.1 Von Mises Cost Function

The first problem of discontinuity in the cost function can be addressed by
turning to the von Mises distribution [22], which is a close approximation to the
normal distribution on the unit circle:
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pVM(ϕ | µ, κ) =
eκ cos(ϕ−µ)

2πI0(κ)
. (1)

Equation (1) defines its probability density function, where ϕ is an angle, µ is
the mean angle of the distribution, κ is inversely related to the variance of the
approximated Gaussian, and I0(κ) is the modified Bessel function of order 0,
which is a constant for fixed κ. Since it leverages the cosine function to avoid
any discontinuity, it is well-suited for gradient-based optimization and we can
derive the following cost function by inverting and scaling it accordingly:

CVM(ϕ | t;κ) = 1− eκ(cos(ϕ−t)−1). (2)

In the cost formulation, we call t the target value and κ is a simple hyperparam-
eter that controls the tails of the loss function.

4.2 Biternion Representation for Orientation Regression

While the von Mises cost presented above solves the first issue, the fundamen-
tal problem of predicting a periodic value using a linear operation persists.
Also, ‖y‖ = 1Inspired by the quaternion representation often found in com-
puter graphics, we propose a natural alternative representation of an angle by
the two-dimensional vector consisting of its sine and cosine y = (cosϕ, sinϕ),
which we call the biternion representation. Surprisingly, the only use of a similar
encoding we found in the related literature is that by Osadchy et al . [26], who
also embed angles into a similar, albeit different, higher-dimensional space. Un-
fortunately, their approach does not solve the periodicity problem since it uses
the discontinuous atan2 function.

The biternion representation immediately suggests the use of the continuous,
cyclic cosine cost widely used in the NLP literature [31]:

Ccos(y | t) = 1− y · t
‖y‖ ‖t‖ . (3)

Implementing a biternion output-layer in any framework for neural networks
is relatively straightforward, since all that is needed is a fully-connected layer
and a normalization layer. For clarity, Equation 4 gives the operation performed
by a biternion-layer during the forward pass, where W ∈ Rn×2 and b ∈ R2 are
the learnable parameters from the fully-connected layer:

fBT(x;W,b) =
Wx + b

‖Wx + b‖ (4)

The derivative of the normalization, necessary for the backward pass, can then
be stated as

∂xi
x

‖x‖ = ∂xi
x√∑
j x

2
j

=

∑
j 6=i x

2
j

(∑
j x

2
j

) 3
2

=

∑
j 6=i x

2
j

‖x‖3
. (5)
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Notice how (1) the normalization in the biternion layer makes sure the output
values are learned jointly and (2) the normalization terms in Ccos can subse-
quently be omitted.

Finally, the ensembling of multiple biternion predictions, as needed by some
augmentation techniques, can simply be performed by averaging the vectors,
since the average of unit vectors is again a unit vector, a fact also used by
Hara et al . [16].

Biternions are Restricted Quaternions. We now show that biternions cor-
respond to unit-quaternions restricted to a single reference axis of rotation. Let
Qϕ be the quaternion

(
ax sin(ϕ2 ), ay sin(ϕ2 ), az sin(ϕ2 ), cos(ϕ2 )

)
representing a ro-

tation of ϕ around the axis a and Qθ the quaternion representing a rotation of
θ around the same axis. A quaternion representing the immediate rotation from
Qϕ to Qθ can be computed as

Qϕ
Qθ

, which corresponds to:




− cos(ϕ2 )ax sin( θ2 ) + ax sin(ϕ2 ) cos( θ2 )− ay sin(ϕ2 )az sin( θ2 ) + az sin(ϕ2 )ay sin( θ2 )
− cos(ϕ2 )ay sin( θ2 ) + ay sin(ϕ2 ) cos( θ2 )− az sin(ϕ2 )ax sin( θ2 ) + ax sin(ϕ2 )az sin( θ2 )
− cos(ϕ2 )az sin( θ2 ) + az sin(ϕ2 ) cos( θ2 )− ax sin(ϕ2 )ay sin( θ2 ) + ay sin(ϕ2 )ax sin( θ2 )
cos(ϕ2 ) cos( θ2 ) + ax sin(ϕ2 )ax sin( θ2 ) + ay sin(ϕ2 )ay sin( θ2 ) + az sin(ϕ2 )az sin( θ2 )




Using the fact that ‖a‖ = 1, the last entry of the quaternion —which en-
codes the cosine of half the angle represented by the quaternion— simplifies
to cos(ϕ2 ) cos( θ2 ) + sin(ϕ2 ) sin( θ2 ) = cos(ϕ−θ2 ). The other entries can similarly be
simplified, resulting in a quaternion representing a rotation of the angle from ϕ to
θ around the same axis a. This shows that biternions can be seen as quaternions
around a fixed reference axis a and the cosine cost corresponds to the amplitude
of the direct rotation between the predicted and the target biternions.

Relationship to the von Mises Cost. By comparing CVM and Ccos, it is
visible that they do not compute the same expression, i.e., the biternion-layer
coupled with the cosine cost does not optimize the von Mises cost. The von
Mises cost for the biternion layer can be written as:

CVM,BT(y | t) = 1− eκ(y·t−1). (6)

Notice the similarity to Equation 3; the main difference is the presence of
e, which “pushes down” the error around the target value, in effect penalizing
small mistakes less strongly.

4.3 Experimental Results

In order to investigate the relative usefulness of the von Mises cost and the
biternion representation for periodic regression, we now turn to the TownCentre
dataset [5]. This dataset contains heads of tracked pedestrians in a shopping
district, annotated with head pose regression labels. The prior distribution of
the pose angle is shown in the middle of Fig. 1. For all experiments, we train
on 7920 heads of 3960 persons and evaluate on 774 heads of 387 random but
different persons. The results can be seen in Table 3.
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Table 3: Quantitative regression re-
sults for the TownCentre dataset [5].

Method MAE

Linear Regression 64.1◦±45.0◦

Naive Regression 38.9◦±40.7◦

Von Mises 29.4◦±31.3◦

Biternion 21.6◦±25.2◦

Biternion+Von Mises 20.8◦±24.7◦
Benfold&Reid [5] 25.6◦ / 64.9◦

As a first baseline, we train a shallow
linear regressor on raw pixel values. We
then train a deep CNN using a naive re-
gression output and cost, as described in
Section 3.2. While the depth of the archi-
tecture allows it to perform much better,
it is still plagued by the two problems of
cyclic regression. Using the von Mises cost
solves the first problem in the cost func-
tion; this reduces the error by a significant
amount, showing that the more appropri-
ate cost function indeed does aid optimization. Following this, we evaluate the
performance of a biternion net both with the cosine cost and the von Mises cost.
As can be seen, the expressive power of the biternion layer solves both problems
encountered in periodic regression and produces the best results.

It should be noted that we cannot fairly compare to most of the related work
for various reasons: the results in [8] have been computed on only 15 persons,
which is far from representative for this dataset. Chamveha et al . [7] use a
tracker and scene-specific orientation priors. Even the numbers from Benfold
and Reid [5] are not a fair comparison since they use walking direction as a
prior. The first of their numbers in Table 3 is achieved by a regressor which has
seen all persons and their walking direction during training2, while the second
of their numbers has not seen any of the persons since it has been trained on a
different dataset.

5 Continuous Regression from Discrete Training Labels

We have shown that biternion nets are well-suited to fully-periodic head pose
regression. We now turn to the third contribution of this paper, namely the abil-
ity to perform continuous head pose regression using only discrete pose labels
for training. To simulate discrete pose labels, we discretize the continuous an-
notations of the TownCentre dataset. By varying the number of discrete bins,
we generate multiple datasets on which we train various approaches using only
the centers of the bins as training labels. We then evaluate the predictions made
by these approaches by computing their mean angular deviation w.r.t. the full
regression annotations of the test set. All results are reported in Table 4. We
first apply two classification-based baselines, followed by all regression-based
approaches introduced in Section 4.

In order to train a regressor using discrete pose labels, a first rather simplistic
approach commonly found in the literature is to train a classifier which outputs
the class center as prediction. For probabilistic classifiers, a natural extension of
this approach is to output the argmax of a quadratic interpolation of the class
with the highest posterior probability and its neighboring classes. On average,
this improves the results by about 2◦.

2 Their setup is justified for their task, but makes a fair comparison impossible.
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Table 4: Regression results from different approaches for different discretizations.
Here infinity represents no discretization. Note that the Biternion layer handles
the discrete labels very well, both with the cosine and the von Mises cost.
Class
bins

Class center
Class

interpolation
Naive

regression
Von Mises Biternion

Biternion +
Von Mises

3 37.2◦±32.8◦ 35.5◦±30.4◦ 45.5◦±39.7◦ 36.6◦±34.5◦ 32.1◦±28.1◦ 32.2◦±28.8◦
4 34.9◦±30.5◦ 31.7◦±29.3◦ 43.0◦±40.6◦ 33.4◦±32.2◦ 27.1◦±27.3◦ 26.9◦±27.4◦

6 26.1◦±28.4◦ 24.1◦±27.6◦ 38.3◦±38.5◦ 31.8◦±33.1◦ 22.1◦±25.5◦ 22.7◦±26.7◦
8 24.5◦±28.6◦ 22.6◦±28.0◦ 40.6◦±39.7◦ 30.2◦±32.3◦ 21.8◦±24.9◦ 21.3◦±25.2◦

10 23.8◦±27.5◦ 21.9◦±26.9◦ 37.6◦±38.3◦ 28.8◦±30.8◦ 21.4◦±24.6◦ 21.8◦±25.5◦
12 23.6◦±29.4◦ 22.2◦±28.8◦ 39.0◦±38.2◦ 29.7◦±31.5◦ 21.4◦±25.3◦ 21.8◦±25.3◦
∞ - - 38.9◦±40.7◦ 29.4◦±31.1◦ 21.6◦±25.2◦ 20.8◦±24.7◦

CNNs compute a continuous function of their input and, during training,
each sample pulls the parameters of the CNN slightly into a direction leading to
a better prediction of its pose. This intuition suggests that it should be possible
for CNNs to learn a continuous mapping from images to pose angles even when
only given very rough pose labels. This is shown in the last four columns of
Table 4. As can be seen, this idea hardly works at all in the naive regression
case and is only somewhat improved by the von Mises cost. Biternion nets, on
the other hand, have no difficulty being trained this way and in fact outperform
the class-based approaches with any number of realistically annotable classes,
whether the cosine or the von Mises cost is used

Unfortunately, looking only at numbers representing an average error over a
large amount of images does not reflect the real advantage of biternion nets over
the classifier approach. For this reason, we plotted heatmaps of the predictions
made by a CNN classifier with quadratic interpolation and the predictions made
by a biternion net in Figure 1. These heatmaps clearly show that, while the class-
interpolation approach and biternion nets give similar scores, the predictions of
the biternion nets are vastly superior because they are more continuous and
similar to the distribution of the ground-truth angles.

5.1 Practicality

To show the potential of our approach, we recorded a small dataset using a
common smartphone camera and annotated it with eight class labels. For this,
we recorded 24 people in our lab and asked them to rotate on the spot. We
then manually cropped a square region in the resulting videos containing their
head and rescaled it to 50 × 50 pixels to make it compatible to our network

Softmax 4 Softmax 8 Ground truth Biternion 8 Biternion 4

Fig. 1: Prediction distributions for softmax and biternion output layers trained
on different discretizations. The classification results include the interpolation.
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Fig. 2: Qualitative results. The purple line shows the sine of the predicted ori-
entation angle across two full turns. For each head, the purple mark shows the
orientation as seen from above. Results are equally spaced and not cherry-picked,
more densely sampled results can be seen in the supplementary material.

architecture. In our scenario, the image sequence of a single person can easily be
annotated based on temporal constraints. We split up the full annotation task
into two annotation runs of four classes. First we annotate Front, Left, Back
and Right, followed by the same annotation with boundaries shifted by 45◦.
We select temporal regions in the video through their start and end frames and
mark any such region as one class. The resulting pair of annotations can then
easily be merged into an eight-class annotation. The whole process, including
the cropping of the head regions and the annotation itself, was done by a single
person and took no longer than two and a half hours.

We train a biternion net on the resulting dataset except for one person, which
we set aside for qualitative evaluation. We only train this network for five epochs
since the number of people in this dataset is orders of magnitude smaller than
in all previous datasets. We then let the biternion net predict the head pose of
the left-out person for each frame individually. The result, which can be seen
in Figure 2, clearly shows that the network estimates a fairly smooth sinusoidal
pose across the two turns the person made, despite having been trained on only
eight discrete pose annotations.

6 Conclusion

In this paper, we have introduced biternion nets, a CNN based approach. We
have validated our architecture on several public datasets and have shown that
our biternion layer is essential for continuous periodic orientation regression.
Our obtained results redefine the state of the art on all used datasets. We fur-
thermore show that, using biternion nets, it becomes possible to collect data
with discrete and coarse orientation labels, which can be annotated quickly and
cheaply, in order to train a continuous and precise head pose regressor. This
suggests that fine-grained regression annotations are no longer necessary for
continuous orientation estimation. The work in this paper was funded by the
EU projects STRANDS (ICT-2011-600623) and SPENCER (ICT-2011-600877).
Code is available at http://github.com/lucasb-eyer/BiternionNet.
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Abstract. In this supplementary material, we show additional details
about both the training procedure and the architecture of our CNN.
Furthemore, we show more detailed quantitative and qualitative results.

1 CNN Training

We use Theano [1] as a framework for our implementation. The details of the
architecture used throughout the paper can be seen in Table 1. The weights of
all convolutional and all but the output’s fully-connected layers are initialized
using “Xavier”-initialization [2] and all biases are initialized to zero. The weights
of both the softmax and the angle output layers are initialized to zero, while
those of the biternion output layer are initialized to random standard normal
values multiplied by 0.01 to break symmetry. Our implementation of batch-
normalization [3] uses a second forward pass through the data after each epoch
for collecting exact mini-batch statistics. Its γ weights are initialized to one and
its β weights to zero.

For the optimization, we implemented AdaDelta [5] for its stability so we
could use the same hyperparameters ρ = 0.95 and ε = 1 × 10−7 for all experi-
ments. We only perfromed data augmentation in two ways. First, we horizontally
flip all training images and adjust their label accordingly. Second, we use random
46 × 46 crops during training and average the output of five such crops (center
and four corners) during prediction. The size of all our minibatches is 100 and
we divide the accumulated parameter gradients by that same number. We ran all
experiments five times with random seeds taken from /dev/urandom, resetting
the optimizer’s state between runs, and report all our results as the average of
those five runs. Finally, as reported in the main paper, we use early-stopping at
epoch 50 for all but the last experiment, for which we stop after the fifth epoch
due to the comparatively very small size of the dataset.
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Table 1: The CNN architecture used throughout the paper, with two special
cases for differently shaped datasets. All Conv layers have a stride of 1 and all
MaxPool layers have a stride equal to their size, i.e. are non-overlapping.

General IDIAP HOC

Type Size Type Size Type Size

Crop size 46×46×3 Input 68×68×3 Input 54×123×3

Conv 24×(3×3×3) Conv 24×(3×3×3) Conv 24×(3×3×3)
Batch Norm 24 Batch Norm 24 Batch Norm 24
ReLU ReLU ReLU

Conv 24×(3×3×24) Conv 24×(3×3×24) Conv 24×(3×3×24)
Batch Norm 24 Batch Norm 24 Batch Norm 24
ReLU ReLU ReLU

Conv 24×(3×3×24)
Batch Norm 24
ReLU

MaxPool 2×2 MaxPool 2×2 MaxPool 2×3

Conv 48×(3×3×24) Conv 48×(3×3×24) Conv 48×(3×3×24)
Batch Norm 48 Batch Norm 48 Batch Norm 48
ReLU ReLU ReLU

Conv 48×(3×3×48) Conv 48×(3×3×48) Conv 48×(3×3×48)
Batch Norm 48 Batch Norm 48 Batch Norm 48
ReLU ReLU ReLU

Conv 48×(3×3×48)
Batch Norm 48
ReLU

MaxPool 2×2 MaxPool 2×2 MaxPool 3×3

Conv 64×(3×3×48) Conv 64×(3×3×48) Conv 64×(3×3×48)
Batch Norm 64 Batch Norm 64 Batch Norm 64
ReLU ReLU ReLU

Conv 64×(3×3×64) Conv 64×(3×3×64) Conv 64×(3×3×64)
Batch Norm 64 Batch Norm 64 Batch Norm 64
ReLU ReLU ReLU

MaxPool 2×2

Dropout p = 0.2 Dropout p = 0.2 Dropout p = 0.2

FullyConn 512 FullyConn 512 FullyConn 512
ReLU ReLU ReLU

Dropout p = 0.5 Dropout p = 0.5 Dropout p = 0.5

Softmax/Angle/Biternion Softmax/Angle/Biternion Softmax/Angle/Biternion
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Fig. 1: Confusion matrices of the last run of the classification task.

2 Confusion Matrices of the Classification Tasks

The confusion matrices obtained for the classification task of [4] described in
Section 3.2 of the main paper are shown in Fig. 1. The average accuracies may
slightly differ from those reported in Table 1 of the main paper because the
confusion matrices are those of the last run only, while the numbers in Table 1
of the main paper are the average of five runs.

3 Qualitative Results

Figure 2 shows further qualitative results based on our test person. The blue line
in the visualization represents the head pose as seen when looking down onto
the person from above it, i.e. the line being at the top signifies that the person
is looking away from the camera. Due to both anonymity and privacy reasons,
further persons will only be published in the final version. None of the pictures
are cherry-picked; we show every ninth frame of the full recording. A small
mistake of the biternion net is visible in the first three pictures of the second
row. Note how the biternion net makes very continuous, stable predictions even
though it works on a frame-by-frame basis, with no notion of time or order.
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Fig. 2: Qualitative results on our own dataset. The small purple mark indicates
the orientation of the person as seen from above, i.e. the top corresponds to back
and the bottom to front.
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Abstract

Human pose estimation from depth data has made sig-
nificant progress in recent years and commercial sensors
estimate human poses in real-time. However, state-of-the-
art methods fail in many situations when the humans are
partially occluded by objects. In this work, we introduce a
semantic occlusion model that is incorporated into a regres-
sion forest approach for human pose estimation from depth
data. The approach exploits the context information of oc-
cluding objects like a table to predict the locations of oc-
cluded joints. In our experiments on synthetic and real data,
we show that our occlusion model increases the joint esti-
mation accuracy and outperforms the commercial Kinect 2
SDK for occluded joints.

1. Introduction

Human pose estimation from depth data has made sig-
nificant progress in recent years. One success story is the
commercially available Kinect system [16], which is based
on [20] and provides high-quality body joints predictions in
real time. However, the system works under the assumption
that the humans can be well segmented. This assumption
is valid for gaming application for which the device was
developed. Many computer vision applications, however,
required human pose estimation in more general environ-
ments where objects often occlude some body parts. In this
case, the current SDK for Kinect 2 [14] fails to estimate the
partially occluded body parts. An example is shown in Fig-
ure 1(a) where the joints of the left leg of the person are
wrongly estimated.

In this work, we address the problem of estimating hu-
man pose in the context of occlusions. Since for most ap-
plications it is more practical to have always the entire pose
and not only the visible joints, we aim to predict the loca-
tions of all joints even if they are occluded. To this end, we
build on the work from [11], which estimates human pose

from depth data using a regression forest. Similar to the
SDK, [11] works well for visible body parts but it fails to
estimate the joint locations of partially occluded parts since
it does not model occlusions. We therefore extend the ap-
proach by an occlusion model. Objects, however, not only
occlude body parts but they also provide some information
about the expected pose. For instance, when a person is sit-
ting at a table as in Figure 1, some joints are occluded but
humans can estimate the locations of the occluded joints.
The same is true if the hands are occluded by a laptop or
monitor. In this case, humans can infer whether the per-
son is using the occluded keyboard and they can predict the
locations of the occluded hands.

We therefore introduce a semantic occlusion model that
exploits the semantic context of occluding objects to im-
prove human pose estimation from depth data. The model is
trained on synthetic data where we use motion capture data
and 3D models of furniture. For evaluation, we recorded a
dataset of poses with occlusions1. The dataset was recorded
from 7 subjects in 7 different rooms using the Kinect 2 sen-
sor. In our experiments, we evaluate the impact of synthetic
and real training data and show that our approach outper-
forms [11]. We also compare our approach with the com-
mercial pose estimation system that is part of Kinect 2. Al-
though the commercial system achieves a higher detection
rate for visible joints since it uses much more training data
and highly engineered post-processing, the detection accu-
racy for occluded joints of our approach is twice as high as
the accuracy of the Kinect 2 SDK.

2. Related Work
3D Human Pose Estimation. Human Pose Estimation is
a challenging problem in computer vision. It has applica-
tions in gaming, human computer interaction and security
scenarios. It has generated a lot of research surveyed in
[18]. There are variety of approaches that predict 3D human

1The dataset is available at http://www.vision.
rwth-aachen.de/data.
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(a) (b)

Figure 1: Comparison of Kinect 2 SDK and our approach. The SDK estimates the upper body correctly but the left leg is
wrongly estimated due to the occluding table (a). Given the bounding box, our approach exploits the context of the table and
predicts the left leg correctly (b).

pose from monocular RGB images [1, 3, 15]. However, a
major caveat of using RGB data for inferring 3D pose is that
the depth information is not available.

In recent years the availability of fast depth sensors has
significantly reduced the depth information problem and
further spurred the progress. Researchers have proposed
tracking based approaches [13, 17, 8, 9]. These approaches
work in real time but operate by tracking 3D pose from
frame to frame. They cannot re-initialize quickly and are
prone to tracking failures. Recently random forest based ap-
proaches [11, 20, 21, 23] have been proposed. They predict
the 3D pose in super real time from a single depth image
captured by Kinect. These approaches work on monocu-
lar depth images and therefore are more robust to tracking
failures. Some model based approaches [2, 26] have also
been proposed that fit a 3D mesh to image data to predict
the 3D pose. However, all these approaches require a well-
segmented person to predict the 3D pose and will fail for
occluded joints when the person is partially occluded by
objects. The closest to our method is approach from [11]
that uses regression forest to vote for the 3D pose and can
handle self-occlusions. Our approach on the other hand can
also handle occlusion from other objects.

Occlusion Handling. Explicit occluder handling has
been used in recent years to solve different problems in
computer vision. Girshick et al. [12] use grammar models
with explicit occluder templates to reason about occluded
people. The occlusion patterns needs to be specially de-
signed in the grammer. Ghiasi et al. [10] automatically
learn the different part-level occlusion patterns from data
to reason about occlusion in people-people interactions by

using flexible mixture of parts [25]. Wang et al. [24] use
patch based Hough forests to learn object-object occlusions
patterns. In facial landmarks localization, recently some
regression based approaches have been proposed that also
incorporate occlusion handling for localizing occluded fa-
cial landmarks [4, 27]. However, these approaches only use
the information from non-occluded landmarks in contrast to
our approach that also uses the information from occluding
objects. Similar to [10, 24] our approach also learns the oc-
clusions from data, however our approach learns occlusions
for people-objects interactions in contrast to [10] that learns
occlusions for people-people interactions and the occluding
objects in our approach are classified purely on appearance
at test time and does not incorporate any knowledge about
distance from the object they are occluding as in [24].

3. Semantic Occlusion Model

In this work, we propose to integrate additional knowl-
edge about occluding objects into a 3D pose estimation
framework from depth data to improve the pose estimation
accuracy for occluded joints. To this end, we build on a re-
gression framework for pose estimation that is based on re-
gression forests [11]. We briefly discuss regression forests
for pose estimation in Section 3.1. In Section 3.2 we extend
the approach for explicitly handling occlusions. In particu-
lar, we predict the semantic label of an occluding object at
test time and then use it as context to predict the position of
an invisible joint.



3.1. Regression Forests for Human Pose Estimation

Random Forests have been used in recent years for vari-
ous regression tasks, e.g., for regressing the 3D human pose
from a single depth image [11, 20, 21, 23], estimating the
2D human pose from a single image [7], or for predicting
facial features [6]. In this section, we briefly describe the
approach [11], which will be our baseline.

Regression forests belong to the family of random forests
and are ensembles of T regression trees. In the context of
human pose estimation from a depth image, they take an
input pixel q in a depth image D and predict the probabil-
ity distribution over the locations of all joints in the image.
Each tree t in the forest consists of split and leaf nodes. At
each split node a binary split function φγ(q,D) 7→ {0, 1} is
stored, which is parametrized by γ and evaluates a pixel lo-
cation q in a depth image D. In this work, we use the depth
comparison features from [20]:

φγ(q,D) =

{
1 if D

(
q + u

D(q)

)
−D

(
q + v

D(q)

)
> τ

0 otherwise.
(1)

where the parameters γ = (u, v, τ) denote the offsets u, v
from pixel q, which are scaled by the depth at pixel q to
make the features robust to depth changes. The threshold
converts the depth difference into a binary value. Depend-
ing on the value of φγ(q,D), (q,D) is send to the left or
right child of the node.

During training each such split function is selected from
a randomly generated pool of splitting functions. This
set is evaluated on the set of training samples Q =
{(q,D, c, {Vj})}, each consisting of a sampled pixel q in
a sampled training image D, a class label c for the limb the
pixel belongs to, and for each joint j the 3D offset vectors
Vj = qj − q between pixel q and the joint position qj in the
image D.

Each sampled splitting function φ, partitions the train-
ing data at the current node into the two subsets Q0(φ) and
Q1(φ). The quality of a splitting function is then measured
by the information gain:

φ∗ = argmax
φ

g(φ), (2)

g(φ) = H(Q)−
∑

s∈{0,1}

|Qs(φ)|
|Q| H(Qs(φ)), (3)

H(Q) = −
∑

c

p(c|Q) log(p(c|Q)), (4)

whereH(Q) is the Shannon entropy and p(c|Q) the empiri-
cal distribution of the class probabilities computed from the
set Q. The training procedure continues recursively until
the maximum allowed depth for a tree is reached.

At each leaf node l, the probabilities over 3D offset vec-
tors Vj to each joint j, i.e., pj(V |l) are computed from the

training samples Q arriving at l. To this end, the vectors
Vj are clustered by mean-shift with a Gaussian Kernel with
bandwidth b and for each joint only the two largest clusters
are kept for efficiency. If Vljk is the mode of the kth clus-
ter for joint j at leaf node l, then the probability pj(V |l) is
approximated by

pj(V |l) ∝
∑

k∈K
wljk · exp

(
−
∥∥∥∥
V − Vljk

b

∥∥∥∥
2

2

)
(5)

where the weight of a cluster wljk is determined by the
number of offset vectors that ended in the cluster. Cluster
centers with ‖Vljk‖ > λj are removed since these corre-
spond often to noise [11].

For pose estimation, pixels q from a depth image D are
sampled and pushed through each tree in the forest until
they reach a leaf node l. For each pixel q, votes for the
absolute location of a joint j are computed by xj = q+Vljk.
In addition a confidence value that takes the depth of the
pixel q into account is computed by wj = wljk · D2(q).
The weighted votes for a joint j are collected for all pixels
q and form the set Xj = {(xj , wj)}. The probability of the
location of a joint j in image D is then approximated by

pj(x|D) ∝
∑

(xj ,wj)∈Xj

wj · exp
(
−
∥∥∥∥
x− xj
bj

∥∥∥∥
2

2

)
(6)

where bj is the bandwidth of the Gaussian Kernel learned
separately for each joint j. As for training, the votes are
clustered and only the clusters with the highest summed
weights wj are used to predict the joint location.

3.2. Occlusion Aware Regression Forests (OARF)

In order to handle occlusions, we propose Occlusion
Aware Regression Forests (OARF) that build on the re-
gression forest framework described in Section 3.1. They
predict additionally the class label of an occluding object
at test time and then use this semantic knowledge about
the occluding object as context to improve the pose es-
timation of occluded joints. To this end, we use an ex-
tended set of training samples Qext = Q ∪ Qocc, where
Qocc = {(qocc, D, cocc, {Vjocc})}, is a set of occluding ob-
ject pixels where each pixel qocc is sampled from a training
image D, has a class label cocc and a set of of offset vectors
{Vjocc} to each joint of interest j.

During training we use the depth comparison features
described in Section 3.1 for selecting a binary split func-
tion φγ(q,D) at each split node in each tree. To select bi-
nary split functions that can distinguish between occluding
objects and body parts we minimize the Shannon entropy
H(Q) over extended set of class labels cext = c ∪ cocc :

H(Q) = −
∑

cext

p(cext|Q) log(p(cext|Q)), (7)



To use the semantic knowledge about occluding object as
an additional clue for prediction of occluded joints, we also
store at a leaf node l the probabilities over 3D offset vectors
Vjocc to each joint j, i.e., pj(Vocc|l) that are computed from
the training samples Qocc arriving at l by using the mean
shift procedure described in Section 3.1. The probability
pj(Vocc|l) is approximated by

pj(Vocc|l) ∝
∑

k∈K
wljk · exp

(
−
∥∥∥∥
Vocc − Vljocck

b

∥∥∥∥
2

2

)
(8)

The inference procedure is similar to standard regression
forest inference. At test time pixels qocc from occluding
objects in a test image D are also pushed through each tree
in the forest until they reach a leaf node l and cast a vote
xjocc = qocc + Vljocck with confidence wjocc for each joint
j. The weighted votes for each joint j form the set Xj =
{(xj , wj) ∪ (xjocc, wjocc)}. The final joint position is then
predicted by using the mean shift procedure described in
Section 3.1.

4. Training Data
Gathering real labeled training data for 3D human pose

estimation from depth images is expensive. To overcome
this, [20] generated a large synthetic database of depth im-
ages of people covering a wide variety of poses together
with pixel annotations of body parts. For generating such a
database, a large motion capture corpus of general human
activities has been recorded. The body poses of the cor-
pus were then retargeted to textured body meshes of vary-
ing sizes. Since the dataset is not publicly available, we
captured our own dataset.

Synthetic Data. We follow the same procedure. To this
end, we use the motion capture data for sitting and stand-
ing poses from the publicly available CMU motion cap-
ture database [5]. We retarget the poses to 6 textured body
meshes using Poser [19], a commercially available anima-
tion package, and generate a synthetic dataset of 1’110
depth images of humans in different sitting and standing
poses from different viewpoints. For each depth image, we
also have a pixel-wise body part labeling and the 3D joint
positions. The depth maps and body part labels are shown
in Figure 2(a-b). For the occluding objects, we use the pub-
licly available 3D models of tables and laptops from the
Sweet Home 3D Furniture Library [22]. We render the ob-
ject together with the humans as shown in Figure 2(c). The
compositions are randomized under the constraints that the
tables and feet are on the ground plane, the laptops on the
tables and the distance between the humans and the objects
is between 3-5 cm. For each composition, we compute the
occluded body parts (Figure 2(d)) and the depth and class
labels with occluding object classes Figure 2(e-f).

Real Data. We also recorded a dataset using the Kinect
2 sensor. The dataset contains depth images of humans in
different sitting and standing poses without occlusions as
shown in Figure 2(a). The 3D poses are obtained by the
Kinect SDK and we discarded images were the SDK failed.
This resulted in 2’552 images. The pixel-wise segmenta-
tion of the body parts is obtained by the closest geodesic
distance of a surface point to the skeleton as shown in Fig-
ure 2(b). The composition with synthetic 3D objects is done
as for the synthetic data.

5. Experiments and Results
In this section we describe in detail the experimental set-

tings used to evaluate our method and report quantitative
and qualitative results. For comparison, we consider three
approaches:

1. The approach [11] described in Section 3.1 is our base-
line. It is trained on the training data without occluding
objects shown in Figure 2(a-b).

2. The occlusion aware regression forest (OARF W se-
mantics) described in Section 3.2 is trained with the
semantic labels of occluding objects shown in Fig-
ure 2(e-f).

3. To show the impact of the semantic information of the
occluding objects, we also train an OARF by assigning
all occluding objects a single label and not the labels
of the object classes (OARF W/O semantics).

Training. We train all forests with the same parameters.
For each training depth image, we sample 1000 pixel loca-
tions. The other parameters are used as in [11], i.e., the re-
gression forests consist of 3 trees with maximum depth 20.
For each splitting node, we sample 2000 depth comparison
features and use b = 0.05m.

Testing. For testing our approach, we use synthetic and
real data. The real dataset is recorded in different indoor en-
vironments, offices and living rooms, and consists of seven
sequences of different subjects in different sitting and stand-
ing poses. From each sequence, we select a set of unique
poses thus providing us with a total of 1000 images. We
split the 1000 images into test and validation set with 800
and 200 images, respectively. While bj were set as pro-
posed in [11], we observed that the values for λj proposed
in [11] are not optimal for our baseline. We therefore esti-
mate them on the validation set. The synthetic test set con-
sists of 440 images of 2 subjects. The subjects, occluding
objects and the poses in both test sets are different from the
ones in the training set. We report quantitative results on
real and synthetic test sets for the 15 body joint positions of
our skeleton.
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Figure 2: Procedure for generating depth images with pixel level ground truth body parts labels and occluding objects masks
with class labels. Synthetic data (top row) and real data (bottom row): (a) Rendered or captured and segmented depth image.
(b) Body part labels at pixel level. (c) Depth data with object. (d) Occluded body parts. (e) Segmented depth map with
occluding objects. (f) Combined labels of body parts and occluding objects.

Method Mean Average Precision

Baseline 44%
OARF W/O semantics 48%
OARF W semantics 54%

Table 1: Mean average precision of the 3D body joints pre-
dictions on the synthetic test set by using the evaluation
measure from [20] with a distance threshold of 10 cm. The
results show that integrating semantic knowledge about oc-
cluding objects provides a significant improvement over the
baseline.

Synthetic Test Data. For quantitative evaluation on syn-
thetic data, we use the evaluation measure from [20] with
a distance threshold of 10 cm and report the mean average
precision over the 3D body joints predictions in Table 1. In-
tegrating the additional knowledge about occluding objects
without object class labels alone provides 4% improvement
over the baseline. When we also integrate semantic knowl-
edge about occluding objects then this provides a significant
improvement of 10% over the baseline. This shows that oc-
clusion handling is beneficial for pose estimation, but also
that the semantic context of occluding objects contains im-
portant information about joint locations.

Real Test Data. For real test data, it is difficult to get 3D
ground truth body joint positions. For the quantitative eval-
uation, we therefore manually labeled the 2D body joint
positions. Since manual annotations of the 2D positions
of body joints, especially occluded joints, in depth images
are sometimes noisy, we used the mean annotations of three
different annotators as ground truth. For the quantitative
evaluation on the test data, we use the evaluation measure

Setting Average Detection Accuracy(%)

Occluded Non Occluded All
Joints Joints Joints

Synthetic Data

Baseline 22.17 50.51 44.54
OARF W/O semantics 24.36 52.57 46.62
OARF W semantics 25.42 52.43 46.73

Real Data

Baseline 25.42 46.21 41.82
OARF W/O semantics 28.26 49.72 45.19
OARF W semantics 31.12 51.69 47.94

Real + Synthetic Data

Baseline 28.62 55.02 49.45
OARF W/O semantics 32.60 55.50 50.66
OARF W semantics 35.77 56.01 51.72

Kinect SDK 18.13 66.36 56.94

Table 2: Average detection accuracy of 2D body joint pre-
dictions on the real test set measured by the evaluation mea-
sure from [7] with an error threshold of 0.1 of upper body
size.

from [7] with an error threshold of 0.1 of upper body size to
report average detection accuracy over 2D body joint pre-
dictions.

In Table 2, the results for the baseline, OARF with and
without semantics are reported. We also evaluate the impact
of the synthetic and real training data. The results show that
the synthetic training data is not as good as the real training
data. However, if we combine real and synthetic data we
get another boost of performance. For all three training set-
tings, the numbers support the results of the synthetic test



set. The baseline is improved by occlusion handling and
semantic occlusion handling achieves the best result of the
three methods. The semantic occlusion model mainly im-
proves the accuracy of occluded joints, but there is also a
slight improvement of non-occluded joints. Without occlu-
sion handling, objects close to joints introduce some noisy
votes that can result in wrong estimates. The occlusion han-
dling reduces this effect. We also compared our results to
the Kinect SDK. The Kinect SDK achieves a higher over-
all accuracy since it is trained on much more training data
and the SDK includes additional post-processing, which is
not part of our baseline. However, our approach achieves a
much better accuracy for the occluded joints.

Table 3 presents detailed quantitative results for 11 body
joints that are occluded in the real test set. The results are
reported for OARF trained on real and synthetic data and for
the Kinect SDK. The results show that for most joints our
model achieves a better accuracy than the Kinect SDK and
adding semantic knowledge provides further improvements.
There are only three joints, namely the right elbow and the
ankles, with a low accuracy. This can be explained by the
training data that contains only few examples where these
joints are occluded.

Qualitative Results. We show some qualitative results on
our real test set in Figure 3 and a few failure cases in Figure
4. The top row shows the body joints predicted by OARF
with the semantic occlusion model, the middle row shows
the body joints predicted by OARF without the semantic
occlusion model and the bottom row shows the body joints
predicted by the Kinect SDK.

6. Conclusion

In this paper, we have proposed an approach that inte-
grates additional knowledge about occluding objects into
an existing 3D pose estimation framework from depth data.
We have shown that occluding objects not only need to be
detected to avoid noisy estimates, but also that the seman-
tic information of occluding objects is a valuable source for
predicting occluded joints. Although our experiments al-
ready indicate the potential of the approach and outperform
a commercial SDK already for occluded joints, the overall
performance can still be boosted by increasing the variety
of objects and poses in the training data.
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Joint Per Joint Detection Accuracy(%)

OARF OARF Kinect SDK
W semantics W/O semantics

Spine 77.51 73.9 42.57
Left Elbow 76.47 73.53 47.06
Right Elbow 17.5 10.53 71.93
Left Hand 47.59 36.55 28.28
Right Hand 59.38 39.58 18.23
Left Hip 50.53 48.76 10.60
Right Hip 75.42 71.25 22.08
Left Knee 31.64 31.64 22.60
Right Knee 27.27 29.09 12.73
Left Ankle 3.87 4.9 5.15
Right Ankle 5.44 5.07 7.88

Average 35.77 32.60 18.13

Table 3: Per joint detection accuracy of 11 occluded body
joints in our real test set by using the evaluation measure
from [7] with an error threshold of 0.1 of upper body size.
The results are reported for OARF with and without seman-
tics and for the Kinect SDK.
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