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Abstract

This deliverable describes the work on task T2.4 done after what was reported in deliverable D2.6.
We have mainly pursued two directions of work during 2015.

The first direction of work was research on socially annotated mapping, with focus on human mo-
tion patterns. We have developed a method to model velocity patterns in the environment using Gaus-
sian mixture models and worked on extending it with usage of Markov Chains. The Gaussian mixture
model models the dominant motion patterns (direction and speed) while the associated Markov Chain
represents the temporal relation between directions of motion (“exit velocity, conditioned on entry
velocity”).

We have also focused on improving localization robustness and optimizing mapping and local-
ization modules. A major extension has been to employ a 3D sensor for mapping and localization
purposes, in order to overcome problems with extreme occlusion of the 2D sensors at leg height
during busy periods in the airport.

1 Introduction

Task T2.4 should provide the robot with precise localization and maps for navigation and planning
(T5.2, T5.5), object tracking from a mobile observer (T2.1, T2.3), and social relation analysis (T4.3).
Another activity within this task is socially annotated mapping. In addition to providing precise
localization in a metric map, the technologies developed within this task also need to provide a map
with social annotations. To fulfill the requirements, we need to provide the following modules.

Mapping This module consists of the environment representations that allow us to model the static
and dynamic parts of the environment, as well as social activities therein.

SLAM This module builds a geometrically consistent map using the sensor data from the robot
platform. (The output map of the SLAM module is represented using the data structures of the
mapping module.)

Localization This module provides accurate continuous localization in the presence of different lev-
els of dynamic changes in the environment.

2 Localization

2.1 3D-NDT-MCL Tuning and Testing

Deliverable D2.6 described our prototype localization system using 2D-NDT-MCL for localizing the
robot. While performing extensive localization tests both at Schiphol and ALU-FR, we concluded
that it is not possible to provide accurate localization in all situations, using only the 2D laser sensors
that were originally mounted on the robot platform. It was decided to mount an additional, 3D, laser
scanner (Velodyne VLP-16) on the robot’s shoulder. Within the one week of testing at Schiphol,
during the integration week in December 2015, 2D localization only failed on one occasion. This can
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(a) Uniform initialization (b) GMM initialization

Figure 1: Comparing the initial particle distribution using a uniform prior belief (a) vs an informed
prior based on an NDT map (b).

still be considered to be a good result, but as an effort to ensure zero localization failures, the main
mode of operation has been to use 3D-NDT mapping and localization from then on.

To lower the memory consumption of the localization module we have integrated a sub-map
approach [4]. At all times we are using only a section of the whole map for localization. We achieve
this by splitting the map into a set of tiles that are dynamically switched while the robot is moving.
In this way we have decreased the memory consumption by one order of magnitude, compared to
loading the map of the entire work area.

To reduce computation time have combined two methods. First we discard all observations below
a certain height. In this way, we omit those parts of the scan data that are most likely to contain people
and other dynamic objects (in an airport, we can safely assume planar motion). In this way we not
only decrease the computation load but also remove the most noisy parts of the scan. In addition we
also subsample the set of distributions in the NDT representation of the scan data, thus matching a
sparse representation of the current scan to the map.

2.2 Bootstrapping MCL

MCL is one of the most popular map-based localization methods for mobile robots, and it has been
shown to be robust in real-world scenarios. However, when starting the robot system, or when recov-
ering from a localization failure, MCL needs to be initialized with a prior belief distribution of the
robot’s pose. This is typically done either by manually providing an initial estimate of the robot’s
pose, or by initializing the localization system with a uniform (uninformed) distribution over the
whole map. In order to achieve accurate localization from the very start of deployment, it is nec-
essary that the localization algorithm converges very quickly to the true pose, which is not the case
when using a uniform prior. To over come this problem, we have developed an algorithm to bootstrap
MCL with a map-based informed prior.

We have published a method for constructing an informed prior for MCL in the 2015 ECMR
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conference [1]. The main contribution of this paper is a novel algorithm for constructing a prior for
MCL from the robot’s current sensor readings, exploiting the NDT map representation. We address
the problem of initialization and re-initialization of NDT-MCL for cases where no external knowledge
about the robot pose is available. However, the proposed initialization method can be used together
with any implementation of MCL. We describe a method of quickly building a Gaussian mixture
model (GMM) representing the prior belief distribution of possible robot poses, given a range scan
and a map. The initial set of particles is then sampled from this GMM. The published paper is
included in the appendix of this deliverable.

Figure 1 illustrates a prior particle distribution using our proposed method, compared to a uniform
prior with the same number of particles. After conducting a series of tests in both static and heavily
dynamic environments, we conclude that our informed prior enables much faster and reliable global
localization, compared to an uninformed prior. In the best case, with 1000 particles, the uniform prior
converged to the correct pose in 56% of the cases in the static environment, and 45% in the dynamic
environment. In comparison, the informed (GMM) prior could converge correctly in over 80% in the
static environment even when using only 100 particles.

2.3 Registration benchmark

In addition to the work in priors for MCL described in the previous section, we also include the final
version of the paper describing our registration benchmark results [3] (that was also mentioned in
D2.6) in the appendix of this deliverable.

3 SLAM

The core of our work on constructing geometric maps for navigation has already been described in
deliverable D2.6. In the period after D2.6, work in the geometric mapping module has consisted of
experimentation with the new 3D setup in the target environment (Schiphol) and similar environments
at ALU-FR. We have also worked on optimization of memory use and computation time of the 3D-
NDT-MCL module.

4 Mapping

Our final module for representing geometric maps for navigation uses NDT-OM, as has been de-
scribed in deliverable D2.6. However, as discussed above, mapping and localization is internally
performed using 3D data. The map and positioning data that is communicated to the rest of the
SPENCER system is converted to 2D planar motion.

Our final socially annotated mapping module extends our previous work on learning and repre-
senting motion patterns (CTMap [2] and T-CTMap, as described in D2.6).

We have since then developed a novel method for learning motion patterns in dynamic environ-
ments. The major challenge was to build a probabilistic model that will be able to grasp continuous
heterogeneous quantities. The data that we have to model consists of two components: direction (a

5



ICT-FP7-600877-SPENCER Deliverable D2.7

circular quantity) and speed (a linear quantity). To model them jointly we have employed Circular-
Linear Gaussian Mixture Model (CL-GMM). By Circular-Linear we mean that support one of the
marginal distributions (the linear one) is R+ while the other one is [0, 2π).

The model is built independently for each location in a grid. To each grid cell we associate a
CL-GMM which represents, in a compact way, the dominant directions and velocities of objects in
the neighborhood of the considered location. In this way we build a probabilistic model representing
the motion model within the environment.

The modes of CL-GMM can be perceived as states representing the direction of motion in a
time interval (assuming that we have observations at discrete time intervals). In order to exploit this
observation, we have added a Markov Chain representing the likelihood of transition among the states.
In this way we can model a turning pattern where agents are switching between the modes.

5 Conclusions

This document reports on the final mapping and localization module of Task T2.4, including socially
annotated mapping.

To fulfill the requirements of this task we have structured it in three modules: Mapping, SLAM,
and Localization. The Mapping module (Section 4) is in charge of the environment modeling. Our
system employs NDT-OM for modeling static parts of the environment and CL-GMM to model the
statistics of moving objects, such as flows of people.

Our SLAM module builds a geometrically consistent NDT-OM by tracking the vehicle pose using
a frame-to-model registration approach that iteratively fuses the sensor data into the NDT-OM map.
After having observed some localization failures in cases of extreme occlusion of the original 2D
laser scanners, we have shifted to 3D mapping and localization using a 3D laser scanner at shoulder
height, in order to guarantee correct localization also in extremely busy periods at the airport.

Finally, our localization module (Section 2) makes use of NDT-MCL to accurately localize the
robot in the NDT-OM map. Using a map-based informed prior distribution for initializing MCL, we
can quickly perform global localization when needed, compared to a standard uninformed prior.
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Beyond Points: Evaluating Recent 3D Scan-Matching Algorithms

Martin Magnusson,1 Narunas Vaskevicius,2 Todor Stoyanov,1 Kaustubh Pathak,2 and Andreas Birk2

Abstract— Given that 3D scan matching is such a central part of the
perception pipeline for robots, thorough and large-scale investigations of
scan matching performance are still surprisingly few. A crucial part of
the scientific method is to perform experiments that can be replicated by
other researchers in order to compare different results. In light of this
fact, this paper presents a thorough comparison of 3D scan registration
algorithms using a recently published benchmark protocol which makes
use of a publicly available challenging data set that covers a wide range
of environments. In particular, we evaluate two types of recent 3D
registration algorithms – one local and one global. Both approaches take
local surface structure into account, rather than matching individual
points. After well over 100 000 individual tests, we conclude that
algorithms using the normal distributions transform (NDT) provides
accurate results compared to a modern implementation of the iterative
closest point (ICP) method, when faced with scan data that has
little overlap and weak geometric structure. We also demonstrate
that the minimally uncertain maximum consensus (MUMC) algorithm
provides accurate results in structured environments without needing
an initial guess, and that it provides useful measures to detect whether
it has succeeded or not. We also propose two amendments to the
experimental protocol, in order to provide more valuable results in
future implementations.

I. INTRODUCTION

Three-dimensional registration, or scan matching, is a crucial
component of several robotics applications, such as mapping, object
detection, manipulation, etc. Scan registration can be formulated as
the problem of finding the relative transformation betwen two 3D
point clouds that best aligns them.

A common problem with research papers presenting novel scan
matching algorithms is that results are computed over a small num-
ber of scans from an application-specific environment. The need for
standardised datasets for benchmarking registration algorithms has
been recognised by the community and several recent works have
been proposed [14, 10, 13]. However, in order to obtain the full
benefits of such benchmarking efforts, it is critical that a sufficient
number of registration algorithms are evaluated in a systematic
manner, which is often not the case.

In this work we evaluate several recent registration algorithms
on the challenging benchmarking dataset proposed by Pomerleau
et al. [20]. We use this benchmark on two types of scan matching
algorithms: local registration using NDT [11, 24] as well as the
MUMC [15] algorithm for global matching. The purpose of this
evaluation is two-fold: first, it aids the establishment of a scientific
approach to comparing registration algorithms; and second, by
applying a benchmark dataset and protocol designed originally for
ICP-based algorithms to NDT and MUMC, we can identify the
general validity of the proposed benchmark.

The two types of methods evaluated in this paper have different
characteristics: MUMC decouples rotation and translation determi-
nation and does a global exhaustive search for the best alignment,
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(a) Apartment, “easy”, 93% overlap.(b) Apartment, “hard”,93% overlap.

(c) Plain, “easy”, 37% overlap. (d) Plain, “hard”, 37% overlap.

Fig. 1: Examples from the data sets.

while NDT registration uses local hill-climbing from an initial pose
estimate. What is common for our algorithms is that they all take
into account local surface structure around each point, and do not
match individual points, in contrast to common ICP variants.

The main contribution of the present paper is a thorough eval-
uation of these recent registration algorithms on a scale that has
not previously been attempted, using 210 scan pairs from different
types of environments, over 100 000 registrations in total. We
show that both NDT and MUMC achieve more robust registration
than ICP indoors, and that NDT performs well also outdoors.
In addition, we show that the Distribution-to-Distribution variant
of NDT (D2D-NDT [23]) is significantly faster than the others,
though slightly less robust than Point-to-Distribution variant (P2D-
NDT[11]). Furthermore, the present evaluation is the first one using
the proposed protocol for non-ICP methods.

A second major finding of this paper is that the proposed
benchmark [20] has significant shortcomings. First, the selection
of unique scan pairs from the datasets is small, thus limiting the
applicability for global scan matching approaches like MUMC.
Second, the initial offsets provided are often unrealistic, while the
amount of scan overlap is generally low. While this does indeed
make the dataset more challenging, it limits its discriminative power
in practically more interesting cases.

In addition to these main contributions, this article also presents
several recent advances for NDT registration and makes available
a new open-source implementation of the P2D-NDT algorithm.

II. RELATED WORK

Recently, much effort has been devoted to the benchmarking of
3D scan-registration and 3D SLAM algorithms. Different bench-
marking approaches differ in the types of scenarios, the sensor



used, and the kinds of ground-truth information available. In this
discussion, we restrict ourselves to 3D mapping benchmarks – as
opposed to the more common 2D benchmarks such as RADISH [7]
and RAWSEEDS [4].

A good collection of 3D datasets is provided at [13]. The majority
have been collected using a high-resolution, long-range, and large
field-of-view Riegl VZ-400 scanner. In some cases, ground truth
computed by manual registration using markers is provided. Some
datasets have additional information like co-calibrated thermal and
color data, and odometry. One of these datasets was used in Pathak
et al. [14] to benchmark the performance of MUMC [15] and ICP.
Most datasets in [13] are from outdoor urban scenarios. No protocol
is defined to systematically evaluate new algorithms.

In Wulf et al. [26], a 1.2 km path in an outdoor urban (mostly flat)
scene was captured in 924 scans of the RTS/ScanDriveDuo. A 2D
ground-truth map was obtained from the land-registry office, and
Monte Carlo localization (MCL) was used to compare the results
of four 6D-SLAM strategies against this 2D reference, and some
manual intervention was applied for quality control. The obvious
limitation of this benchmark is the lack of full 3D ground-truth and
providing only one type of environment.

Some authors have performed detailed studies of the “valleys
of convergence” for registration algorithms [12, 10, 6], though
typically only for a few scan pairs.

A tiltable SICK LMS 200 was employed in [10] to collect
scans in an underground mining scenario. The two algorithms
compared were ICP and NDT. No ground-truth was available, so
the algorithms are compared with respect to accumulation of errors
and the valley of convergence.

The common drawback of all the above mentioned benchmarks is
the availability of only a single kind of environment and of typically
only a few scan pairs. In contrast, the ETH benchmark used here
[19, 20] has a range of environments, 6 × 35 scan pairs (chosen
to have a uniform range of overlaps between 30% and 99%), with
3 × 64 pose offsets, sampled from a 6-DOF normal distribution.
Hence, (for local registration methods at least) we have 40,320
tests in total for the benchmark, per algorithm.

III. REGISTRATION ALGORITHMS

Let F and M be two partially overlapping point clouds, taken
from nearby poses. Additionally, we define F to be a fixed (or
reference) scan, while M is a moving (or reading) point set. The
registration task estimates the parameters Θ of a transformation
function T , such that T (M,Θ) is consistently aligned with F .

A. P2D-NDT

The Normal Distributions Transform was originally developed in
the context of 2D laser scan registration [2]. The central idea is to
represent the observed range points as a set of Gaussian probability
distributions. Assuming that a set of n point samples P = {pi =
(xi, yi, zi)} has been drawn from a Gaussian distribution N (µ,Σ),
the maximum-likelihood estimates of the covariance and mean can
be obtained from the observations:

µ =
1

n

i=n∑

i=1

pi, M = [p1 − µ . . .pn − µ] , Σ =
1

n− 1
MMT

The probability density function estimated in this manner might or
might not be a good representation of the sampled points, depending
on the extent to which the Gaussian assumption on P holds. At a
sufficiently small scale, a normal distribution can be considered
a good estimate of local surface shape, in that it can represent

planar and linear patches. Thus, the basic principle of the NDT is
to represent space using a set of Gaussian probability distributions.

The point-to-distribution (P2D) variant of NDT for 3D registra-
tion [9] maximises the likelihood of points from one scan, given the
NDT model created from the reference MNDT (F). The likelihood
that a point x is generated from MNDT (F) is then:

p(x|MNDT (F)) =

nF∑

i=1

wiN (x|µi,Σi), (1)

where nF is the number of Gaussian components of the 3D-NDT
model of point cloud F . The weight of each Gaussian component
wi determines the influence of that component in the model set on
the likelihood of a single point from the moving scan. Magnusson
et al. [11] propose to use trilinear interpolation in order to take
into account neighbouring Gaussians. The implementation used in
this work, however, only considers the closest Gaussian to each
point, thus setting wi to zero for all other Gaussians. P2D-NDT
minimises an approximation of the negative log likelihood function
of p(T (M,Θ)|MNDT (F)), over the space of transformation pa-
rameters Θ. After re-organisation of terms, the registration problem
is posed as minimising the objective function

fp2d(Θ) =

|M|∑

j=1

−d1 exp
−d2

2
m̂j

T Σ−1
m m̂j , (2)

where d1 and d2 are positive regularizing factors (values are
calculated based on the current NDT model resolution as described
in [8, 3]), j iterates over all points mj in the moving scan M,
(µm,Σm) are the parameters of the corresponding closest normal
distribution in MNDT (F), and m̂j = T (mj ,Θ) − µm. The
objective fp2d is doubly differentiable with analytic expressions
for the gradient and Hessian. Once MNDT has been constructed,
3D registration can be performed by minimizing the objective
function (2) using a numerical optimization technique, such as
Newton’s method.

The P2D-NDT implementation used here also employs a reg-
ularization step to avoid near singular Hessian matrices in the
optimisation step. The procedure is the same as for the D2D-NDT
algorithm, and is further described in Section III-B.

Important Parameters: In this work, the P2D-NDT implementa-
tion is a recent re-implementation as part of the perception oru
suite1. Several parameters govern the performance of the algorithm:

• Discretization levels: the algorithm performs registration on
models reconstructed at different spatial resolutions. Typically,
it is desirable to first register at a coarse resolution (e.g. 2 m
cells), followed by finer registration steps (e.g., 1 m and 0.5 m).
Note that the solver may go from finer to coarser grids, and
back again, in a similar fashion as is common in multigrid
methods for solving linear systems.

• Maximum number of iterations: controls the number of
optimization iterations allowed at each resolution.

• Subsampling grid size: in order to avoid bias from uneven
point distribution and to speed up computations, the moving
scan M is subsampled using a regular grid of a given reso-
lution. This resolution is another important parameter which
affects overall performance.

The parameter selection is summarized in Table I.

1http://wiki.ros.org/perception oru



B. D2D-NDT

The Distribution-to-Distribution (D2D) variant of the NDT regis-
tration algorithm, proposed by Stoyanov et al. [23], is an extension
of P2D-NDT which operates solely on NDT models. The algorithm
minimizes the sum of L2 distances between pairs of Gaussian
distributions in two NDT models. Formally, the transformation
between two point sets M and F is found by minimizing:

f(Θ) =

nM,nF∑

i=1,j=i

−d1 exp

(
−d2

2
µij

T (RTCiR+ Cj)
−1µij

)

(3)
over the transformation parameters Θ, where: nM and nF are the
number of Gaussian components in the NDT models ofM and F ;
R and t are the rotation and translation components of Θ; µi, Ci

are the mean and covariance of each Gaussian component; µij =
Rµi + t−µj is the transformed mean vector distance; and d1, d2
are regularization factors (fixed values of d1 = 1 and d2 = 0.05
were used). The optimization over Θ can be done efficiently using
Newton optimization with analytically computed derivatives.

Two modifications of the D2D-NDT algorithm, compared to
the previously published version [23], have been included in this
work. The prior version only considered the sum of pairwise
closest Gaussian components when forming the objective function
in Eq. (3), while the version tested here can be configured to use a
neighbourhood of close components. The second modification is the
addition of a regularization step to the computation of the Hessian
matrix, prior to the computation of a Newton step. We perform an
eigen-decomposition of H = QΛQ−1 and check if the smallest
eigenvalue λmin is close to 0. If that is the case, we compute a
regularized Hessian matrix Hr = Q(Λ + diag(λr))Q−1, where
λr = 10−3λmax − λmin. This procedure ensures that the Hessian
matrix is not excessively biased in one particular search direction
and helps avoid local minima in the objective function.

For D2D-NDT, we have the additional parameter of the neigh-
bourhood size; i.e., the number of Gaussian distributions used
in the evaluation of the objective function. While our previous
implementation [23] used size 0 (i.e., only the closest distribution)
we currently use size 1 (i.e., the 8 neighbours in the closest
layer). The other parameters (grid sizes and termination criteria)
are selected in the same way as for P2D-NDT.

A similar idea, also performing registration with an objective
function based on Gaussians, is used by the Generalized ICP
method [21]. However, Generalized ICP assumes locally planar
patches around each point, then calculates the normal direction to
the local surface and uses it to bias the orientation of the covariance
matrix, as opposed to P2D-NDT and D2D-NDT, which estimate the
Gaussian parameters using points within a local neighborhood.

C. Plane Matching (MUMC)

The “Minimally Uncertain Maximum Consensus” (MUMC) al-
gorithm [15] is a global alternative to the local methods like ICP
and NDT. This approach consists of a pre-processing step in which
plane patches are extracted from the 3D scans [25].

Especially for scenes containing man-made structures with large
planar surfaces, this leads to large data-compression: the memory
required for the extracted “plane-cloud” can be as small as 2.5%
of the original point-cloud [16]. Each plane patch is represented by
the unit normal n̂ and the distance d from the origin, along with the
polygonal boundary. Using a noise model of the 3D sensor model,
a 4×4 covariance matrix of the plane parameters is also computed
[17] for each patch.

TABLE I: Summary of parameter selections.

Step Description

P2
D

-N
D

T Data filtering of moving grid sampling, cell size 40 cm
Data filtering of fixed use full point cloud
Grid resolution 1 m, 2 m, 1 m, 0.5 m
Termination criteria 5 iterations, ∆Θ < 10−3

D
2D

-N
D

T Data filtering (both) use full point clouds
Neighbor layers 1
Grid resolution 1 m, 2 m, 1 m, 0.5 m
Covariance scaling d1 = 1, d2 = 0.05
Termination criteria 5 iterations, ∆Θ < 10−3

M
U

M
C Sensor noise model Gaussian, σ = 7mm

Size-similarity threshold 8
Diversity constraint on/off

The MUMC registration method then works directly on the two
“plane clouds” corresponding to the two scans to be registered. The
registration is based on finding the set of patch correspondences in
the two scans which leads to the most geometrically consistent 3D
transformation – as measured by the determinant of the estimated
covariance matrix of the transform. This covariance is a function
of the aforementioned plane-parameter covariance matrices, which
in turn are a function of the sensor range noise model. Hence,
a cascade of the uncertainties is maintained. The search space for
correspondences can be reduced by a set of consistency tests. Some
examples of these tests are: threshold for the allowable variation in
the size of a given patch between scans, or patch color-histogram
consistency [18], when color is available, e.g. in RGB-D scans.

MUMC also exploits the fact that for planes, the determination
of rotation is decoupled from translation. Thanks to this property,
combined with the vast data reduction in the number of patches
compared to the number of points, and due to the pruning of the
correspondence search-space by many consistency tests, MUMC
can afford to do a global, exhaustive search for the most consistent
set of patch correspondences. Hence, one of its advantages is that,
unlike local methods like ICP and NDT, it does not necessarily
need an initial guess for the transform. In fact, it has been shown
to be able to register scans taken far away from each other and with
considerable occlusion, without odometry [14].

Although the original paper [15] lists 8 parameters to be chosen,
in the latest version of the algorithm only 2 parameters are selected
explicitly. The others are estimated automatically based on the
sensor noise-level. Since the same sensor was used for all scans
in this paper, the same parameters were used for all the datasets.

• Sensor Noise Model: We assume Gaussian sensor noise in
range measurements, with standard deviation σ = 7 mm.

• Size-Similarity Threshold: The determinant of the inverse of
the 4×4 plane-parameter covariance matrix is proportional to
N4, where N is the number of points on the patch. The size-
similarity threshold L̄det [15] dictates the maximum allowable
change in N in two potentially corresponding patches from
the two scans. We set L̄det = 8, which allows the ratio of the
number of points in two potentially corresponding patches to
change by a factor of as much as exp(8/4) = 7.4. This is a
very permissive value.

In addition to the above numerical parameters, MUMC can be
run in two modes, as explained below.
The Plane Diversity Constraint (DC): For MUMC to compute
translation reliably, it needs to find plane correspondences in all
directions. When only two or less translation components can be
found reliably (e.g., the corridors in the ETH dataset desribed



below) the uncertainty is automatically detected by MUMC be-
cause a certain matrix is effectively numerically rank-deficient [15,
Eq. (25)].

In this case, there are two options for MUMC:
• DC-OFF: This option signals that we want to keep the rotation

estimate and the reliably found translation components. For the
translation component in the unreliable direction, we could
either set it to zero or, if available, we could use the odometry
component in that direction. In both cases, the error in this
direction will be large and this will adversely affect the
translation accuracy statistics of the algorithm.

• DC-ON: In this case, MUMC automatically declares the
registration as having failed rather than venturing to fill-in
unavailable translation components with heuristics or odom-
etry. This result will then not be considered for computing the
accuracy statistics.

D. ICP

The iterative closest point (ICP) algorithm was first introduced
in 1991 [5] and is still widely used for registration of 3D point
clouds. The two seminal papers on ICP were written by Besl
and McKay [1] and Chen and Medioni [5]. To summarize the
algorithm concisely: ICP iteratively refines the relative pose of
two overlapping scans by minimizing the sum of squared distances
between corresponding points in the two scans. Corresponding point
pairs are identified either by Euclidean point-to-point distance [1]
or by a point-to-plane metric [5], which measures the distance from
a point in one scan and the closest tangent plane in the other. Since
its conception, a large number of variants have been developed,
differing in, e.g., how points are selected and how to select point-to-
point correspondences. However, the main structure of the algorithm
remains. The point-to-plane variant has been shown to be more
accurate in many cases, and Pomerleau et al. [20] show that it also
performs better for the benchmark used here. As specified in the
experimental protocol, we compare our algorithms to the baseline
implementation of the well-established point-to-plane ICP variant.

The parameter selection for ICP is the same as in [20].

IV. DATA AND PROTOCOL

We have used the same six environments from the “Challenging
Laser Registration” data sets [19] as in Pomerleau et al. [20]. One of
the main advantages of these data sets is that the ground-truth poses
of all point clouds have been tracked with millimeter precision using
a total station. These six data sets cover both indoor and outdoor
environments, cluttered and open, some with large planes and some
with more variable surfaces.

Apartment: An apartment with five rooms. This data set has
denser scans than the others: 365 k points per scan, compared to
100 k–200 k for the others. (See Fig. 1a–1b.)

Stairs: A staircase transitioning from indoor to outdoor.
ETH: Large hallway with pillars and arches. These scans have

little constraints along the direction of the hallway, and also features
repetitive structures in the form of the pillars.

Gazebo (winter): A public park with a gazebo.
Wood (summer): Dense vegetation around a small path.
Plain: Open field atop a mountain in the Alps. Includes very

little geometric structure. (See Fig. 1c–1d.)
The data sets come with sets of initial pose offsets, to be

used for assessing the algorithms’ robustness to poor initial pose
estimates. These pose offsets are indeed quite challenging, and a
large part of them are much worse than what can be expected to be
encountered by a mobile robot. The offsets categorized as “easy”,

“medium”, and “hard”, and are generated from zero-mean normal
distributions, where the standard deviation is larger for the more
difficult categories. The “easy” poses have a standard deviation of
0.1 m and 10◦, while the “hard” poses have a standard deviation of
1.0 m and 45◦. Although the translation offsets are not so severe,
the rotation offsets are very large. Some of the “hard” poses have an
initial rotation offset of more than 90◦. This is very challenging for
any local registration algorithm, which may more likely converge
to a solution that is rotated 180◦ than the correct orientation. Even
some of the “easy” poses are offset more than 30◦, which is not
particularly easy – especially not for scan pairs with little overlap
from unstructured environments. Conversely, some of the “hard”
poses may be quite close to ground truth.

A. Suggested amendments to the protocol

For future work, we suggest the following amendments to the
protocol [20].

1) Fixed-magnitude pose offsets: The pose offsets should have
fixed magnitudes (as in Magnusson et al. [11]) rather than being
sampled from normal distributions with increasing variance. Given
the scale of the scans, reasonable magnitudes might be 0.5 m and
10◦ for “easy” poses, 2.5 m and 20◦ for “medium” poses, and 5 m
and 45◦ for “hard” poses.

2) More unique scan pairs: The large number of initial pose
estimates are relevant only to the local methods. For global methods
which do not necessarily need initial guesses, it is more important
to have more unique pairs and their ground-truth transforms.

V. RESULTS

The results of our evaluations are summarised in Figs. 2 and 3.
The rotation and translation errors are plotted separately, but pre-
cise registrations should have small errors both in translation and
rotation. Due to space constraints, we were not able to include
plots about all pertinent aspects of the benchmark. The complete
outcome2 for the NDT-based methods, as well as additional tables
and plots of the results3 are available online.

For the local registration methods (ICP and the NDT-based
methods), we provide separate plots for the scan pairs with “easy”
pose perturbations only (Fig. 3c) and the large overlaps only
(Fig. 3b), in addition to plots for the complete data sets (Fig. 3a).

Because MUMC does not make use of an initial estimate, the
only relevant sub-category is the amount of overlap. Another con-
sequence is that the statistics are computed only from the 35 unique
scan pairs from each data set, as opposed to 6720 combinations of
scan pairs and pose offsets for the local registration methods. In
addition to the magnitude of the final pose error, the entries for
MUMC also specifies the percentage of scans that were used to
compute the errors. The remaining percentage of scans could not
be registered, but were also successfully declared as having failed.

A. Accuracy

The accuracy of the final solution (after registration) is measured
as described in Pomerleau et al. [20, Eqs. 1–3]. The translation
error is the Euclidean norm of the difference between the ground-
truth and the output translation vectors. The rotation error is defined
as the geodesic distance from the rotation matrix that brings the
moving point cloud from the output orientation to that of the
ground-truth pose. Error statistics are discussed in terms of quantiles
where Q50 is the median and Q95 is the 95th percentile.

2http://projects.asl.ethz.ch/datasets/doku.php?id=laserregistration:
evaluations:home

3http://aass.oru.se/Agora/Benchmarks/



The unstructured data sets, Wood and Plain, are quite difficult for
all of the algorithms. Because they do not contain enough geometric
structure, they are challenging for MUMC in particular. Looking at
the percentages of matches estimated by MUMC to be successful,
we can see that it detects that it is not able to perform matching in
most cases. For Wood, MUMC detects a lack of features in 86%
of the 35 scan pairs with DC-ON (63% with DC-OFF), and only
tries to match the remaining 5 pairs, which means 14% of the pairs
from this dataset. Because of the lack of structure, the translation
error is above 50 cm also for the remaining pairs.

For Wood scans with large overlap (over 75%) ICP is accurate
(less than 10 cm error) up to Q50, while P2D-NDT is equally
accurate up to Q75. P2D-NDT is the only algorithm that is able to
register any outdoor scans with small overlap (30%–50%), and is
significantly better than the others for the Plain dataset (accurate
to Q50 for “easy” poses). D2D-NDT performs similarly to ICP for
the unstructured data sets.

Gazebo is an outdoor data set, but it also contains a prominent
built structure. In fact, this data set proved slightly easier than the
indoor data sets for the NDT methods, judging by Fig. 3a. We
believe that the reason for this is in the combination of large surfaces
that the moving scans can “slide on” and good constraints from the
gazebo itself, which are not planar enough to be useful for MUMC.

For the structured data sets (including Gazebo), P2D-NDT finds
accurate solutions up to at least Q75 as long as the pose offset is
“easy”, and about Q45–Q55 for all poses. This is in contrast to ICP,
which finds accurate solutions up to Q50 for the “easy” poses, and
Q30–Q40 for the all poses. Another finding is that D2D-NDT has
better overall accuracy for the complete datasets, but when looking
at the “easy” poses only, P2D-NDT is better. In other words, D2D-
NDT is less sensitive to poor initial pose estimates but sometimes
less precise when a good pose estimate is available.

MUMC performs much better for Apartment and Stairs than
the other datasets, because it can exploit the structure. Stairs in
particular works well. Counting the pairs that the algorithm flags as
successfully matched, MUMC DC-ON correctly registers 100% of
the pairs with large overlap from that dataset, and 95% of all pairs.
ETH, on the other hand, is difficult because it only has a strong
planar component along one direction. MUMC finds the correct
orientation in most cases, or detects that it cannot provide a certain
result (see Fig. 2b).

Some of the “easy” poses are also quite difficult for the local
methods. Practically no registrations converge to an acceptable
solution for all these cases. The exception is P2D-NDT on the
Gazebo dataset, with accurate solutions (within 5 cm and 2◦ from
ground truth) even at the 95th percentile for the “easy” poses.

Comparing Figs. 3a and 3b, it can be seen that ICP is more
sensitive to small overlaps than the NDT-based methods. Consid-
ering only scan pairs with large overlap, ICP’s results are more
similar to NDT’s than when considering the “easy” poses only.
NDT often succeeds up to at least Q25 also small overlaps (30%–
50%), although scan pairs with small overlap from the unstructured
datasets are very challenging, especially for D2D-NDT. As long as
there is diverse enough planar structure in the environment, which
is the case in Apartment and Stairs, MUMC is quite robust to small
overlap ratios, which can be seen by the fact that the corresponding
curves in Figs. 3d and 3e are similar.

B. Further discussion of MUMC results

The most important aspect of the MUMC results is that since
MUMC is a global method, no initial guess was provided to it.
The only categorisation pertinent to MUMC is the overlap level:

large (easy to register), medium, and small (difficult to register).
As noted above, the local algorithms (NDT and ICP) do require an
initial guess that is close enough to the true solution.

In addition to the converged 3D transform, MUMC also returns
a flag for whether the result can be considered successful (based
on the number of correspondences found) and a covariance matrix
of the transform.

The percentage of matches labelled by MUMC as successful is
noted for each dataset in the plots. The stricter MUMC DC-ON will
also consider a registration unsuccessful if certain components of
translation cannot be found, as explained in Sec. III-C. Therefore,
the success percentage of MUMC DC-ON for each dataset is less
or equal to that of MUMC DC-OFF.

The covariance matrix of the transform clearly shows the dom-
inant uncertain directions (the eigenvectors corresponding to high
eigenvalues). It is clear from Fig. 2b that the rotation determination
of both MUMC DC-ON and DC-OFF is very accurate for the cases
that are flagged as successful – in particular for the ETH dataset.

At this point it should be noted that the Hessian of the NDT
score function (2), (3) can also be used to construct a covariance
estimate of the pose after registration, in order to flag unsuccessful
matches [8, 22]. A detailed analysis of that is not within the scope
of the present paper, but is a topic of ongoing work.

C. Timing

The execution times when running the benchmark are summa-
rized in Figure 3. The reported times include all pre-processing (ex-
tracting plane patches for MUMC, building NDT representations,
constructing kd-trees for ICP, etc.) but exclude the time required
for loading the scan files from disk.

As aptly noted by Pomerleau et al. [20], it is difficult to make
precise comparisons of execution times. Many uncertainties affect
execution time: not only the hardware used, but also the compiler,
the skill of the programmers, etc. The execution times provided
here can only give a coarse estimate of the speed.

The execution times were measured on different computers. NDT
was running on a quad-core 3.50 GHz Intel Core i7 CPU. MUMC
was running on an 3.40 GHz Intel Core i7. Please note that these
are slightly faster computers than the 2.2 GHz Core i7 used for
ICP [20].

Although the implementations can make use of multiple cores,
for these tests they were all running in a single thread. Typically
four batches were being run in parallel (each on a separate CPU
core) to reduce the overall processing time.

Implementation details: The difference between the execu-
tion speed of ICP and P2D-NDT is smaller than what has been
reported in our earlier publications. One of the reasons is that
the ICP implementation used here (libpointmatcher4) uses more
efficient components (e.g., the kd-tree implementation, where most
of the execution time for ICP is spent, uses libnabo instead of
libann).Another reason is that the old P2D-NDT implementation5

runs significantly faster than this version, from perception oru.
Most likely, this is because the old implementation uses the OPT++
library for the central optimization loop, while perception oru
uses its own optimization implementation. However, our tests with
the old implementation has shown that it often is trapped in local
minima when used in this benchmark, which results in poorer
accuracy.

4https://github.com/ethz-asl/libpointmatcher
5http://aass.oru.se/∼mmn/software/ndt test suite v0.1.zip
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(a) Cumulative probabilities of rotation errors for NDT and ICP, for all types of poses
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Fig. 2: Cumulative probability plots of rotation errors after registration. Rotation error (in degrees) is on the horizontal axis. The MUMC
plots also include the percentage of scan pairs from which the plots are generated. A suggested threshold for successful matches (2.5◦)
is marked with a vertical bar.
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(b) Cumulative probabilities of translation errors for NDT and ICP, for large overlaps
(over 75%) but all poses.
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(c) Cumulative probabilities of translation errors for NDT and ICP, for “easy” poses,
but all levels of overlaps.
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Statistics of execution times, for all data sets.
Algorithm CPU Q50 Q95

Plane ICP i7 2.2 GHz 2.58 s 8.43 s
P2D-NDT i7 3.5 GHz 1.48 s 8.75 s
D2D-NDT i7 3.5 GHz 0.37 s 0.82 s
MUMC DC-OFF i7 3.4 GHz 2.95 s 18.01 s
MUMC DC-ON i7 3.4 GHz 2.41 s 12.95 s

Fig. 3: Cumulative probability plots of translation error after registration. Cumulative probabilities are on the vertical axes. Translation
error (m) is on the horizontal axis, On the left are plots for the local methods (NDT and ICP), and on the right are plots for the global
methods. The MUMC plots also include the percentage of scan pairs from which the plots are generated. A suggested threshold for
successful matches (10 cm error) is marked with a vertical bar.



VI. CONCLUSIONS AND FUTURE WORK

Judging by the results summarized in Figs. 2–3, which is the
result of over 120 000 scan matches, we conclude that MUMC and
NDT generally provides more robust registration than point-to-point
or point-to-plane ICP when faced with scan pairs that have either
small overlap or a poor initial alignment. Plots for point-to-point
ICP have been omitted due to space constraints. The main advantage
of MUMC is that it performs well even when no initial pose
estimate (from odometry) is available, as long as there is sufficient
structure in the environment. The two NDT-based methods (P2D-
NDT and D2D-NDT) do require initial estimates, but are much
less sensitive to errors in this estimate than ICP. D2D-NDT and, in
particular, P2D-NDT work better than MUMC outdoors, because
they have less strict assumptions on planarity. D2D-NDT is the
fastest of the evaluated methods, with a median execution time that
is about 7 times shorter than non-NDT methods.

For situations where no initial pose estimate is available, MUMC
provides a good solution in common indoor environments, and can
also provide information about whether it has successfully matched
two 3D scans or not. For real-time use on a robot, D2D-NDT is
preferable because of its faster execution speed. For challenging
data sets with little structure or little overlap, P2D-NDT provides
the best accuracy.

The benchmark protocol used here was designed for local reg-
istration methods. In future work, we will adapt the benchmark
to more fairly assess the performance also of global methods, by
including more unique pairs of scans from the given datasets.

Generating datasets of similar quality (with precise 6-DOF
ground truth poses) for other sensors types (e.g. Velodyne scanners
or RGB-D cameras) and environments would also be very useful.

More sophisticated algorithms also return the covariance of the
registration transform in addition to the transform itself. Some way
to automatically assess the accuracy of this estimation, at least in
terms of the primary uncertainty directions would be useful.
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the Robustness of Planar-Patches based 3D-Registration using
Marker-based Ground-Truth in an Outdoor Urban Scenario”. In:
IROS. Taipei, Taiwan, 2010, pp. 5725–5730.

[15] Kaustubh Pathak, Andreas Birk, Narunas Vaskevicius, and Jann
Poppinga. “Fast Registration Based on Noisy Planes With Un-
known Correspondences for 3-D Mapping”. In: Robotics, IEEE
Transactions on 26.3 (2010), pp. 424–441. ISSN: 1552-3098.

[16] Kaustubh Pathak, Andreas Birk, Narunas Vaskevicius, Max Pfin-
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Where am I? An NDT-based prior for MCL
Tomasz Piotr Kucner, Martin Magnusson, Achim J. Lilienthal

Abstract—One of the key requirements of autonomous mobile
robots is a robust and accurate localisation system. Recent
advances in the development of Monte Carlo Localisation (MCL)
algorithms, especially the Normal Distribution Transform Monte
Carlo Localisation (NDT-MCL), provides memory-efficient reli-
able localisation with industry-grade precision. We propose an
approach for building an informed prior for NDT-MCL (in
fact for any MCL algorithm) using an initial observation of
the environment and its map. Leveraging on the NDT map
representation, we build a set of poses using partial observations.
After that we construct a Gaussian Mixture Model (GMM)
over it. Next we obtain scores for each distribution in GMM.
In this way we obtain in an efficient way a prior for NDT-
MCL. Our approach provides a more focused then uniform initial
distribution, concentrated in states where the robot is more likely
to be, by building a Gaussian mixture model over potential poses.
We present evaluations and quantitative results using real-world
data from an indoor environment. Our experiments show that,
compared to a uniform prior, the proposed method significantly
increases the number of successful initialisations of NDT-MCL
and reduces the time until convergence, at a negligible initial cost
for computing the prior.

I. INTRODUCTION

Localisation is a key component of most mobile robot sys-
tems today, e.g. in field robotics, intra-logistics or assistance
robots. The main focus over the past years has been to increase
localisation accuracy and efficiency. Multiple solutions are
already widely employed. For large outdoor environments,
localisation approaches are often based on GPS, while for
indoor environments, industrial localisation systems are typ-
ically based on active or passive beacons. Such systems are
capable of accurate localisation, although visibility constrains
and the requirement for specific infrastructure in the form of
installed beacons or GPS satellites is an important drawback.
These localisation methods in current practice constrain robots
to operate only within limited spaces, and additionally they
impose additional deployment costs.

Conversely, it is very common in the robotics community
to use map-based localisation approaches without additional
infrastructure. Monte Carlo Localisation (MCL) [1] is one
of the most popular map-based localisation approaches and
has been shown to be robust in real-world scenarios [1]–
[3]. Recent works of Saarinen et al. [4] and Valencia et
al. [5] have shown that by using the Normal Distributions
Transform (NDT) [6], [7] for representing the environment it
is possible to obtain much higher localisation accuracy with
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(a) Uniform initialization (b) GMM initialization

Fig. 1: Comparing the initial particle distribution using a uniform
prior belief (a) vs an informed prior based on an NDT map (b).

lower memory and CPU requirements, compared to occupancy
grid maps [8]. Thanks to the increased accuracy (localisation
error along the path is less then 3 cm [5]) NDT-MCL provides
localisation good enough to fulfil industrial requirements and
to be used in commercial applications. This improvement en-
ables the development of flexible autonomous robotics systems
that are independent from external infrastructure while still
achieving industry-grade accuracy. However a mechanism for
accurate and fast initialisation and re-initialisation of the NDT-
MCL variants was so far missing. In order to achieve accurate
localisation from the very start of deployment, it is necessary
that the localisation algorithm converges very quickly to the
true pose, which is not the case when using a uniform prior.

The main contribution of this paper is a novel algorithm
for constructing a prior for MCL from the robot’s current
sensor readings, exploiting the NDT map representation. In
fact, the proposed initialisation method can be used together
with any implementation of MCL. However, since it has
been demonstrated [4] that NDT-MCL provides better pose
estimates than occupancy grid based MCL and makes already
use of an NDT map of the environment, we use NDT-MCL.
We address the problem of initialisation and re-initialisation
of NDT-MCL for cases where no external knowledge about
the robot pose is available. We describe a method of building
a Gaussian mixture model (GMM) representing the prior belief
distribution of possible robot poses. The initial set of particles
is then sampled from this GMM.

The remainder of the paper is organised as follows. Sec. II
relates our work to the state of the art. Sec. III introduces our
novel prior for NDT-MCL. Sec. IV describes the experimental
setup and compares the localisation performance obtained with
the proposed informed prior to initialisation with a uniform
distribution.978-1-4673-9163-4/15/$31.00 c© 2015 IEEE



II. RELATED WORK

The Monte Carlo Localisation algorithm was first intro-
duced by Dellaert et al. [1]. The MCL algorithm is a non-
parametric Bayes filter where the belief distribution is repre-
sented as a finite set of particles. In contrast to parametric
representations (e.g. Kalman filters) this has the advantage
that it can represent also multimodal distributions. MCL is
commonly implemented using occupancy grid maps [9] as the
map representation [10].

Over the years, there have been several attempts to improve
the quality of localisation with particle filters [2], [3]. Two
notable recent improvements are NDT-MCL [4] and DT-NDT-
MCL [5]. These approaches use NDT maps [6], [7] rather
than occupancy grid maps for representing the structure of
the environment and for evaluating the sensor model. The
result is a significant improvement in accuracy even with rather
coarsely discretised maps, which enables much more efficient
mapping and localisation, both in terms of memory and CPU
requirements [4].

Using standard MCL, initialisation is typically performed
either by using a normal distribution centred around an initial
guess of the robot pose, or by distributing particles uniformly
all over the map (possibly with the addition of excluding poses
that are known to intersect with obstacles in the map).

A noteworthy modification of the initial distribution of
samples is presented in the work of Yee et al. [11]. In this
work a regular grid of positions over the map is constructed.
To compute the distance between grid points authors uses
Monte Carlo tests to compute the error statistics as a function
of separation. Next, the authors compute the most likely
orientation for each grid point and compute the likelihood for
it. This likelihood is later on used as a weight for a Gaussian
associated to respective grid point. Moreover authors assume
that each one has the same isotropic covariance. In this
way they obtain a Gaussian mixture model which is later
used for initialisation and re-initialisation. The basic idea of
using Gaussian Mixture Model shows some similarities with
method introduced in following paper, however idea of Yee
et al. is closer to uniform initialisation. The grid points are
distributed all over the map and later on the MCL filtering
step is executed to implicitly define contributing particles.
In contrast, our approach cuts the search space by defining
areas of interest based on initial observations which later are
evaluated. Moreover, the approach of Yee et al. uses the strong
assumption that all the distributions are identical and isotropic.

Oh et al. [12] present a method to incorporate additional
information in particles weights. Their method splits the
map into regions and associates to each one a factor that
describes the probability of the robot being inside that area.
This approach introduces an additional bias that decreases the
likelihood of particles in less likely areas (e.g., it is more
likely that a robot is on the street than inside a wall). The
major drawback of this method is the fact that this additional
information is stored in separate static layer and has to be
rebuilt each time some property of the environment changes.

Moreover, any error in this layer might cause undesired
behaviour of the filter by favouring some particles based only
on their location even if they support the wrong hypothesis.

Dual MCL or Mixture MCL [2] suggests to invert local-
isation problem. Instead of first computing the new samples
based on motion and then adjust its belief factor using ob-
servations authors suggest to sample form distribution based
on observation and then adjust the importance factor based on
the previous position of the robot. A similar but more recent
approach is the observation-driven Bayes filter of He and
Hirose [13]. Compared to these approaches, using NDT maps
to generate poses from observations for the initial distribution
is rather straight-forward. In comparison, He and Hirose [13]
require pre-caching four meta-map representations and ap-
proximately one second of processing time per frame. Another
interesting contribution towards implementing mixture MCL
is the work of Elinas and Little [14]. However, in this work
the authors employ stereo vision for localisation purposes and
define a map as a set of SIFT features.

Instead of using SIFT features, we exploit the Normal
Distributions Transform (NDT) environment representation.
This method was introduced by Biber et al. [6] and later on
extended to three dimensions by Magnusson et al. [7]. NDT is
a piece-wise continuous representation, which represents space
as a set of normal distributions, as opposed to occupancy grids,
which represent space as a set of binary random variables.
Moreover thanks to the extension by Saarinen et al. in [15]
NDT Occupancy Map is able to store explicitly information
about free and explored space within the environment, which is
an additional asset in distributing samples over environment.

III. PRIOR DISTRIBUTIONS

We will now describe our informed NDT-based prior for
MCL as well as the baseline uniform distribution.

A. Uniform distribution

As a baseline to evaluate the performance of our proposed
approach we will use a uniform distribution of particles over
the map. This approach was already discussed in the seminal
work of Dellaert et al. [1].

To obtain a uniform distribution of particles over the map
we use a two-step process. In the first step we uniformly draw
one cell from the set of all unoccupied cells in the NDT grid
(that is, all cells that do not contain a Gaussian representation
of the local surface shape). In the second step we uniformly
draw a position and orientation in the given cell. We repeat
these two steps until we have acquired the desired number
of particles. Thanks to this approach we make sure that all
particles are placed in free space in the map, while keeping
the execution time fixed.

B. Particle generation from GMM

In this section we will describe how to build the Gaussian
mixture model (GMM) representing the prior belief distribu-
tion of the robot and how to obtain the initial set of particles
from the GMM.



The procedure is as follows:

1) Obtain promising poses - NDT represents the global
map as a set of Gaussians: MG

NDT = {N (µGj ,Σ
G
j )}NG

j=1

To represent our current observation which is a set of n
two-dimensional point samples z = {pzi (xi, yi)}ni=1, we also
use NDT: Z̄ = {N (µZj ,Σ

Z
j )}NZ̄

j=1 To build a set of possible
poses we first compute the Cartesian product of the global
map and the current observation: MG

NDT × Z̄ = {(g, z̄)|g ∈
MG
NDT ∧ z̄ ∈ Z̄} In this way combine each Gaussian from

observation with each Gaussian from map. Next, for each pair
(g, z̄), we compute the pose q of the robot with respect to g.
To solve this problem first we have to find the transformation,
which will align eigen vectors with highest eigens value in
z̄ and g. Then we apply this transformation on robot pose
qz̄ and as a result we get q. In this process we obtain a set
Q = {qi(xi, yi, θi)}NzNg

i=1 of possible poses of the robot in the
coordinate frame of the global map. The size of Q depends
on the size of the environment, the sensor field of view and
the map resolution. In experiments we have observed that for
an environment of size 25 x 25 m and resolution of 0.2 m
number of the elements of Q is between 1869 and 3900, for
0.5 m is between 1755 and 2516, and for 1.0 m is between
803 and 1371.
In Fig. 3 we can see how initial set of hypotheses is gen-
erated. We can see that the current observation contains two
distributions (blue and yellow). We align each Gaussian from
the observation with a Gaussian in the map. Since we know
what is the robot pose with respect to each Gaussian, we can
transform robot pose to the global coordinate frame and obtain
a set of possible poses. In Fig. 4 we can see a visualisation of
all possible hypotheses obtained during one such initialisation.
2) Build GMM - The set of poses obtained in the previous
phase implicitly mark regions of interest. To estimate the
likelihood of those map regions we will generate a GMM in
pose space. First we split the state space into a regular voxel
grid V = {vj}NV

j=1. For simplicity of further discussion we
assume that each voxel is a set of all possible poses within
predefined ranges: vj = {(x, y, θ)|x ∈ [xjmin, x

j
max) ∧ y ∈

[yjmin, y
j
max) ∧ θ ∈ [θjmin, θ

j
max)}.For each voxel vj that

contains pose particles we estimate the corresponding normal

(a) Uniform initialisation (b) GMM initialisation

Fig. 2: Track of convergence (500 particles, cell size = 0.2[m]) -
ground truth (red), NDT-MCL localisation estimate (green). We can
see here how many localisation updates are necessary to reach correct
pose estimate.

distribution in the following way:

µ = 1
n

∑i=n
i=1 qi (1)

M = [q1 − µ...qn − µ] (2)
Σ = 1

n−1M
TM (3)

In this way we obtain a Gaussian mixture model repre-
senting an informed prior on the poses: MGMM (Q) =
{N (µj ,Σj)}Nj=1 where N ≤ |Q| and N ≤ |V|. The next
step is to estimate the weight wj of each distribution in the
set MGMM (Q). As a weight we will use the L2 likelihood
of the current observation at the mean pose, given the global
map. The pose likelihood is computed as in Saarinen et al. [4]:
wj = (

∑N
i=1 L

i
2)−1Lj2 L2 likelihood is the likelihood that the

robot has a particular pose because it is consistent with several
parts of the observation.

Lj2(Z̄|qj ,MG
NDT ) = (4)

∑NG

i=1

∑NZ̄

k=1 d1 exp(−d2

2 µ
T
ik(RjΣ

G
i R

T
j + ΣZk )−1µik)

where µik = Rjµ
Z
i + tj − µmk and d1 and d2 are scaling

factors.
Each pose qj can be represented as a rotation matrix Rj and
translation tj with respect to the global coordinate frame. Lj2
represents the likelihood of the current observation represented
as NDT Z̄ given the global map and the state qj .
Fig. 5 shows the means of all distributions of the GMM
generated from the distribution shown in Fig. 4.
3) Sampling - The final step is to draw a set of initial particles
from the GMM. The probability of drawing a sample q can
be expressed as a sum of n weighted Gaussians: p(q) =∑n
j=1 wjN (q|µjΣj). In this work we assume that obtained

GMM is sparse therefore we can approximate this probability
in the following way: p(q|q ∈ vj) = wjN (q|µjΣj) This
approximation allows us to build a simple two step sampling
algorithm. In the first step we draw a voxel according to its
weight w and in the second step we draw the pose according
to the normal distribution within the voxel.

Fig. 3: Simple example where we can see how does aligning
Gaussians from observation with ones from map leads to initial set
of hypotheses.
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Fig. 6: Success rate [%] (dotted line - average success rate, solid line - the average success rate for 4 best cases)
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Fig. 7: Time until correct pose estimate [s (# of updates)]
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Fig. 8: Time until convergence [s (# of updates)]
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Fig. 9: Time for computing the prior distribution [ms]

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We have evaluated the approach presented in Section III-B
using two data sets, recorded in a static and a dynamic
environment. The static data set is publicly available1. In
the test data sets, the robot traverses a closed loop (see
Fig. 10) multiple times with velocity of 1 m/s in an indoor
environment. Both data sets were collected in the basement of
Örebro university using a commercial Automatically Guided
Vehicle (AGV) system from Kollmorgen Automation AB. A

1Data sets are available under:
http://mrolab/datasets.html.

Master Controller (VMC 5000) controls the vehicle along
predefined trajectories. The ground truth was obtained with
a commercial infrastructure-based positioning system, which
tracks wall-mounted reflectors using a rotating laser. After
setup and calibration, this system provides accurate (according
to its specification accuracy should be approx. 1 cm or less)
position information. For infra-structure free localisation we
use a LIDAR with field of view of 270 degrees and range
of 18 m. The data set covers a 25 m × 25 m area. In both
cases the robot was travelling along the same predefined path
with the same velocity. To emulate a dynamic environment,
we have asked a group of people to not only move around in
the environment, but also on purpose to disturb the localisation



process by changing the shape of the environment with panels
or even to occlude the laser with them.

The goal of the experiment was to investigate how using an
informed prior (see Fig. 1) will affect global localisation. The
comparison in this paper is done between uniform initialisa-
tion of NDT-MCL and GMM initialisation of NDT-MCL, as
described in Section III.

We have chosen 60 random points along the path which rep-
resent different starting positions for the localisation process.
We use the following four evaluation criteria:

1) Success rate - how many times the robot manages to
localise itself correctly. We consider that the robot has
localised it self correctly if the error is less then 10 cm.

2) Initial localisation time - how long does it take to
minimise the localisation error with respect to ground
truth. In case of localisation failure the measurement was
discarded.

3) Convergence time - how long it takes before the value of
one standard deviation is less then 10 cm and 5 degrees.
This metrics was computed only for the cases when the
localisation was performed successfully.

4) Computation time - how much time it takes to generate
the prior.

We have tested five particle populations sizes (25, 100, 250,
500, 1000 particles) for maps of three different resolutions (0.2
m, 0.5 m, 1.0 m). For the coarsest map (resolution 1m), the
resolution of the voxel grid in pose space was 1.5 m and π

2
radians, and for the other two map resolutions the pose voxel
grid was 0.5 m and π

2 radians. Please recall that we have
been performing our tests using NDT maps and evaluating
two different priors for NDT-MCL. If we would use a regular
occupancy or octomap it would be impossible to achieve
accuracy below 10 cm for maps with grid cells as big as
0.5x0.5 m2 or 1.0x1.0 m2 [4].

B. Results

In Fig. 6 we can see that, as long as the map resolution is
sufficient enough for accurate localisation, we achieve a high
success rate using the GMM prior even with a relatively small
number of particles. In the best case the success rate was as

Fig. 4: Poses generated in step 1 of the initialisation algorithm, from
which the GMM is created in step 2.

high as 86% for the static environment and 76% for dynamic.
The best result obtained with a uniform distribution for popula-
tion containing 1000 particles is only as high 56%. It is worth
noticing that for a static environment above some threshold
(in our experiments around 100 samples), the average success
rate is stable and does not change much when changing the
number of particles and depends mainly on the map resolution.
In case of the dynamic environment we can observe that the
success rate increases with the number of particles, however,
the success rate is high for each population equal or bigger
than 100 particles. Also for dynamic environments the success
rate is higher for initialisation using GMM than with uniform
distribution. In Fig. 6 the average success rate across all
populations is marked for a given map resolution with a dotted
line. The average success rate for the four biggest sample
populations is marked with a solid line. We can see that the
average success rate with an NDT-based prior is always higher
then the initialisation with a uniform prior. This observation
is true both in static and dynamic environment.

Another interesting feature of the NDT-based prior is that
it allows to localise quickly (see Fig. 7). In the best case the
average localisation time was as short as 3 seconds (or 38
updates of the particle filter), while initialisation based on a
uniform distribution was never faster then 18 seconds (228
updates). All the timing plots in Figs 7–9 show the results
only for the cases where the filter succeeded in localising. As
a consequence, the plot for 25 uniformly distributed particles
in Fig. 7(a) shows zero seconds, because none of those runs
succeeded. In Fig. 7 it is visible that increasing the size of the
particle population does not change significantly time before
successful localisation. The time needed by both distributions
to converge is comparable and usually low, despite of that
time needed to localise correctly is significantly shorter for
proposed prior then for uniform one. The result of this time
difference is visible in Fig. 2. Where the pose estimate is
following the correct estimate.

In Fig. 9 we can see that in most cases computing the GMM-
based prior only takes a few milliseconds more than computing
a uniform prior. If we compare this value against the average
time between two laser scans in this data set, which is 70 ms,
we can assume that it is possible not only to use this method

Fig. 5: An example of set of mean values for each component in
GMM in map with resolution 0.2 m.



Fig. 10: Test environment with predefined path [4].

for initialisation but also for re-initialisation. If we want to use
NDT-based prior for non-NDT MCL we have to remember that
additional time will be required to build map of environment
using NDT.

To evaluate the usefulness of the GMM method in case
of re-initialisation, we have manually triggered resets of the
localisation system during the robot runs in static environment.
We have observed that after a high spike in the localisation
error (at the moment of reset) the error drops again. During
the test run we have reset the system 26 times and managed
to recover in 20 cases when using the informed prior. For
the system using uniform distribution for re-initialisation the
success rate was only 7 recoveries for 26 resets.

V. CONCLUSIONS

In this paper we have introduced a method for constructing
an informed prior for MCL. Based on a map of the environ-
ment we build a GMM which represents likely poses of the
robot. Then we sample from the GMM distribution to obtain
the initial set of particles.

The method introduced in this paper shows a way to
implicitly define regions of interest, by removing areas that
have no support from current observations. This is a major
improvement in comparison to methods which are evaluating
poses all over the given map. Moreover, the method builds and
maintains a probabilistic model of the robot pose estimate on
the fly. Therefore it does not require any additional process
after obtaining the map of environment, such as assigning
environment classes to regions of the map [12]. It also makes
the method flexible enough to incorporate new information ac-
quired by the sensor. Although such observation-driven priors
have been used for other MCL implementations previously,
this is the first implementation of a method for generating an
informed prior for MCL. The main motivation for our method
is the recent demonstrations [4], [5] of using NDT-MCL to
achieve superior accuracy in dynamic industrial environments
while maintaining a small memory footprint and low CPU
requirements.

We also have performed a series of experiments both in a
static and a dynamic environment demonstrating that the pro-
posed method is able to perform global localisation with fewer

particles, in comparison to the baseline uniform distribution.
Moreover we have shown that an NDT-MCL particle filter
initialised with NDT-based prior converges faster than when
using a uniform distribution. We have also demonstrated that
the significantly decreased localisation time (as measured in
number of seconds or laser scans after initialisation) can be
achieved with only a negligible one-time computational cost
of a few milliseconds for generating the prior.

VI. FUTURE WORK

In future work, we will extend the GMM method to 3D and
also evaluate its performance with sensors that have a smaller
field of view (e.g., RGB-D cameras).
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