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Abstract

We present our progress on online learning from streams of data for 3D object classification. During
the second half of the project, we developed several methods that address different aspects of this
task. These methods were published in three conference papers, which we attached to this document.
For any technical details, we refer to these papers, here we only summarize the developed algorithms.

1 Introduction

To automatically annotate observations from a given input data stream with semantic information, a
robot must rely on some kind of human intervention. This means that a classification algorithm that is
supposed to find moving objects such as cars and bicycles or – as is the case in SPENCER – carts and
trolleys in an airport, must be given at least some known examples of these objects. Therefore, some
kind of supervision is required to achieve this task. However, information required from a human
supervisor is expensive, and it is important to perform the learning task with as few label queries
as possible. Furthermore, for the scenario addressed in SPENCER, but also in many other robotic
applications, learning must be done on the fly, i.e. the classifier must be able to update its internal
representation quickly and without having to re-observe all previous data samples. Therefore, in
task 2.2. we investigate online learning methods that require only little annotated data. One popular
framework to achieve this is Active Learning, which we briefly describe in the next section. Then, in
Sec. 3 we discuss the need to have classifiers that return a high uncertainty when they make wrong
predictions (i.e. those that are less “overconfident”) for active learning. In Sec. 4 we present a new
method to address the problem of non-i.i.d data coming from streams. This appears particularly in
online learning settings where current observations are highly correlated with those from previous
frames. And in Sec. 5 we summarize our work on semi-supervised online learning for classification
of moving objects. All findings presented in Sec. 3, 4, and 5 have been published in conference
articles, and these articles are added in the appendix for a more detailed reference.

Note: The title of this deliverable is somehow misleading. The purpose of Task 2.2 is to investi-
gate online (and not “offline”) learning methods, and a completely unsupervised method was not the
goal here, but rather semi-supervised and active learning techniques. In fact, as stated in the DOW
(Task 2.2) “... the aim of this task is to reduce the necesity of human intervention as much as possi-
ble”, and “A second goal of this task is to develop techniques that improve the learned models over
time”.

2 Active Learning

The main difference between standard passive learning and active learning is that, instead of strictly
separating between a training and a testing phase, the active learner performs loops of training and
testing, thereby incorporating the information flow obtained from the teacher (e.g. a human supervi-
sor) into the loop. Fig. 1 shows a schematic flow chart of a generic active learning algorithm. We
note that, while in general active learning can be used in many different contexts, we use it for object
classification in this work.
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Figure 1: Active Learning flow chart. After an initial training step, the classifier is presented new test
data and reports label predictions and confidence values (here: uncertainties). These are used to ask
a human supervisor for new ground truth labels, which subsequently are added to the current training
data. Then, the training process is repeated with the extended training data until a stopping criterion
is met.

One important question in active learning is how to select the data samples for which semantic
information, i.e. in our case class labels, are requested from the human supervisor. We refer to this
as the which-question problem. The most used method to address it is uncertainty sampling, and we
also use this in our implementation. Thus, we compute an uncertainty along with the prediction of a
newly observed sample. Then, we use a confidence threshold #

c

and decide to ask for a ground truth
label ŷ for all those data samples which, in the current learning epoch, have been classified with a
confidence lower than #

c

.

3 Confidence Boosting

One important requirement for a classfier used for Active Learning is that it is not overconfident, i.e.
it should not give low uncertainty predictions when the prediction itself is actually wrong. Therefore,
we developed the Confidence Boosting method (see attached paper, published at ICRA 2015). The
main idea is to use the confidence (i.e. one minus the uncertainty) of a predicted sample to give those
samples a higher weight that are wrong and certain. This way, in the boosting framework, the next
weak learner will put more emphasis on those samples, thereby reducing the overconfidence of the
entire (strong) classifier. Some results of this method are shown in Fig.2. As can be seen, Confidence
Boosting is particularly useful for Active Learning applications.

4 Stream-Based Active Learning

In principle, there are two ways to do Active Learning: either the test set consists of observations
that are collected beforehand, or it is a growing number of samples that are continously observed
and added to the training data. In the first case we have a fixed pool of data, and the algorithm can
pick good samples to query from this pool, which is usually very large. This is the most common
application for Active Learning. However, in mobile robotics, and in particular for robots that are
to learn semantics persistently, the second scenario known as stream-based Active Learning is much
more relevant, because robots perceive streams of data, and they should be able to learn from it
continuously. Therefore, for SPENCER we consider stream-based Active Learning.
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Figure 2: Left: Comparison of active learning with the results reported in the literature. Active Confi-
dence Boosting always performs best. Center and Right: Qualitative results of our experiments. We
show two different objects from the RGBD data set. Note that colour is not used for classification. Af-
ter 10 rounds of active learning, Confidence Boosting (CB) returned the correct label, while standard
gradient boosting did not. Note that CB even distinguishes the lime correctly from a lemon although
there was no colour information used, i.e. even such small differences in shape can be detected with
our approach.

4.1 Pool-based vs. stream-based learning

To analyse this difference further, we performed the following experiment. We considered a large,
standard benchmark data set and applied two online classification methods: online Random Forests
(ORF) and online multi-class Gradient Boost (OMCGB) with ORF as weak classifiers (for both meth-
ods see [1]). Then, we resampled the data in such a way that the occurence of samples in each class
was distributed uniformly over the time line and applied again the online classification methods. Eval-
uation was done on a hold-out set not used for training, and we choose the KITTI data [2] for this
experiment. The resulting learning curves are shown in Fig. 3 (left). As we can see, both online
learning methods perform resonably well for the case of uniform distributions of class occurences.
However, on the original data, where many objects of the same class can appear for some time period
but for others there are almost no occurences, we have a significantly worse performance of the online
learners. The reason for this behavior is that online Random Forests can not handle well data sets with
unbalanced classes and with a non-uniform distribution of class occurences.

4.2 Improvement using Mondrian Forests

A novel algorithm that addresses the above problems is the Mondrian Forest by Lakshminarayanan et
al. [3]. The major difference between a Mondrian tree and a standard decision tree is that Mondrian
trees also store the extent of the data that corresponds to each node. While the decision tree uses
splits that range over the entire potential range of the data, the splits of a Mondrian tree only cover the
actual data range. This is achieved by keeping bounding box information for each sub tree. Note that
the data itself is not stored in the tree, only the bounding boxes. As in random decision trees, splits
are generated randomly, but samples are drawn from an exponential distribution whose rate parameter
is proportional to the data extent of the sub tree.

Fig. 3 shows the resulting learning curve when using a Mondrian Forests instead of a Random
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KITTI dataset - Active Learning

Figure 3: Left: Learning curves of two standard online learning methods: online Random Forests
(ORF) and online multi-class Gradient Boost (OMCGB), both evaluated on the original and the re-
sampled data (“stream” vs. “random”). As we see, the performance of both methods for the original
data stream is significantly worse than for the resampled set. Center: Learning curves of the Mon-
drian forest for the same experiment. The MF classifier can deal much better with the data stream.
Right: Classification accuracies for Active Learning using an MF and an ORF, where only 5%, 10%
and 20% of the most uncertain data points are queried. Again, the MF clearly outperforms the ORF.

Forest for the re-sampled data set described above. We can see that the MF classifier increases its
classification accuracy much faster than the ORF, even in the stream-based setting, and it also reaches
a higher level (about 90% accuracy). We then tested the Active Learning scenario, where new label
queries were generated after every 1,000 data samples. From these, we only used the most uncertain
predictions for querying and re-training, and this fraction varied between 5% and 20%, i.e. from 50 to
200 samples per learning epoch. The result is shown in the right plot of Fig.3. The plot clearly shows
that the MF can improve its classification accuracy even when trained only on a very small fraction
of the data. Thus, the MF classifier both generates less queries and it can deal with the hard problem
of learning from data streams. This is also reflected by the qualitative results shown in Fig. 4.

Figure 4: Some results on the KITTI data. From left to right, we show classification results on five
consecutive data frames (point clouds) after training on a stream of 10000 samples. The upper row
shows the result for ORF, the lower row the MF result. Most classifications are done correctly by the
MF (green boxes), while the ORF has many false classifications (red boxes).
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Figure 5: Overview of our online learning approach for 3D object classification from data streams.
The upper time line represents the input from the data stream, the lower time line visualizes the online
clustering method used. For new samples, there are two possibilities: either they are grouped into an
existing cluster by adding them as “satellites” onto a “center” node, or they are themselves new center
nodes. In the first case (here: the cyclist), no ground truth label is queried, but the label of the already
existing center node is used. In the second case (here: the pedestrian), a new ground truth is queried.

5 Semi-Supervised Online Learning

As shown above, Active Learning is a useful method to reduce the number of required training sam-
ples, especially when the classification is done from data streams. However, the actual required
number of samples can still be large, and therefore we aim at a further reduction in the number of
hand-labeled training samples. To do this, we also investigate semi-supervised learning, i.e. methods
that can deal with data sets that are partially labeled. The idea is to exploit the information about sim-
ilarities between labelled and unlabelled samples in addition to the ground truth labels for learning.
And, as above, we require that the method is online, i.e. that it is able to incrementally update the
internal representation with newly observed samples.

In the attached publication at IROS 2015, we developed a semi-supervised online learning method
that learns dynamic objects from a stream of 3D point clouds. The overview of this system is shown
in Fig. 5. For the details of the algorithm, we refer to the attached paper.

The quantitative results are shown in Fig. 6. We evaluated the approach both on the KITTI data
set mentioned earlier, as well as on the RGB-D data set by Lai et al. [4]. Form the plots we see that
our method outperforms a standard combination of Online Star Clustering with Label Propagation,
while the number of generated clusters is very similar.

7
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Figure 6: Left and Center: Evaluation on the RGB-D data set based on V-measure (violet), clas-
sification accuracy (blue) and number of clusters per vertex (green). Left: Our approach. Center:
Combination of standard Online Star Clustering with Label Propagation (OSP+LP). Note that our ap-
proach significantly outperforms the OSC+LP method in terms of accuracy and V-measure, although
there is no big difference in the number of clusters. Right: Result of our algorithm on the KITTI
data set. The accuracy is worse than on the RGB-D set, but the input features are only based on depth
values and not on color.

6 Discussion and Conclusions

In terms of the algorithmic development of efficient online learning methods for 3D object clas-
sification, with the additional requirement that the method only requires comparably little training
data, we have made significant progress within SPENCER. This is mainly documented by the three
publications, especially because for all three, the application of the developed methods to concrete
perception problems in robotics was the main focus. That said, it still remains to run further tetst with
these methods on the data sets produced by SPENCER at the airport of Amsterdam. Currently, the
available data from preliminary tests can not be used due to the lack of other software components
(e.g. data segmentation) and also because the focus during the integration week in Amsterdam was
laid on other components of the system. We are however working on this and we will collect more
data during the final deployment phase of the project. This will then allow us to show the usability of
our methods for the SPENCER application, even though this might me after the end of the project.

References

[1] A. Saffari, M. Godec, T. Pock, C. Leistner, and H. Bischof, “Online multi-class lpboost,” in
CVPR, 2010.

[2] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the KITTI vision
benchmark suite,” in Proc. of Conf. on Computer Vision and Pattern Recognition (CVPR), 2012.

[3] B. Lakshminarayanan, D. M. Roy, and Y. W. Teh, “Mondrian Forests: Efficient Online Random
Forests,” in Advances in Neural Information Processing Systems (NIPS), 2014.

[4] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view rgb-d object dataset,”
in ICRA, 2011.

8



Active Online Confidence Boosting for E�cient Object Classification

Dennis Mund Rudolph Triebel Daniel Cremers

Abstract— We present a novel e�cient algorithm for object
classification. Our method is based on the active learning
framework, in which training and classification are performed
in loops, and new ground truth labels are queried from the
supervisor in each loop. Our underlying classifier is from the
family of boosting methods, but in contrast to earlier methods,
our Confidence Boosting particularly focusses on misclassified
samples that have a high classification confidence associated.
We show that weighting these samples more than others leads
to a decrease of overconfidence, for which we give a formal
definition. As a result, our classifier is better suited for active
learning, leading to steeper learning curves and less required
label queries. We show the benefits of our approach on standard
data sets from machine learning and robotics.

I. Introduction

Object classification is one of the most important tasks
for a mobile robot, because for many kinds of interactions
with the environment or with a human user, the robot needs
semantic information about the environment. For that reason,
research in this topic is performed by a large community,
both within robotics and computer vision, and a number
of good approaches have been presented in the past. The
focus of these methods, however, di�ers slightly with the
application: While in o�ine learning run time and memory
e�ciency are often less important, robotics is often con-
cerned with online learning, because robots need to make
fast decisions and update their internal representations with
little computational e�ort. Furthermore, an important aim is
to reduce the amount of required user interaction. In the case
of object classification this means that the required amount
of human-labeled training data should be small. Finally, for
a mobile robot it is very advantageous to have a reliable
measure of confidence along with the classification results,
because often important and safety-critical decisions depend
on them, and a restriction to very confident classifications can
help to avoid accidents, for example in autonomous driving
applications [1], [2].

In this paper, we present a novel learning method that
addresses all these three issues. Our approach is based on
an active learning framework, in which the human user is
involved in the learning process, and learning is done in
cycles of iterated training and inference. As we will show
experimentally, this reduces the amount of required hand-
labeled training data, and at the same time increases the
classification performance. As an underlying classification
method we use a novel online multi-class boosting algorithm.
The motivation to choose this classifier stems from the very

All authors are with Computer Vision Group, Department of
Computer Science, Technische Universität München, Germany
{dennis.mund,rudolph.triebel,daniel.cremers}@in.tum.de
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Fig. 1: Object classification with active online Confidence Boosting: The
image on the left was recorded with an RGB-D sensor [3]. On the right,
we show class label predictions obtained from online gradient boosting [4]
and our online Confidence Boosting. The upper row shows results after
one learning round, the lower row depicts results after 10 rounds of active
learning. As we can see, both classifiers first return a wrong class label
(see arrows in legend), but Confidence Boosting can recover from the error
and finally give a correct label. In this paper, we show that this is because
Confidence Boosting is less overconfident.

fast computation time used for training and inference, and
from the online nature of the algorithm, i.e. it can update its
internal representation and make predictions before having
seen all input data. This is particularly useful in active
learning, because it reduces the run time. However, as we
will show, standard online boosting methods (e.g. Sa�ari
et al. [4]), are not very useful for active learning, because
they tend to associate wrong classifications with a too large
confidence, i.e. they are often overconfident. This has a
severe e�ect, because it prevents the classifier from finding
misclassified samples and, as a result, reduces the chance to
obtain ground truth labels from the human for re-learning
these erroneously classified samples. An illustrative example
is given in Fig. 1. Here, the input image shows a light
bulb, but the available information is too low to classify
this object correctly. Both standard gradient boosting and
our Confidence Boosting method report a wrong class label.
However, after 10 rounds of active learning (on a data set
that is di�erent from this test data), Confidence Boosting is
able to classify the object correctly, while gradient boosting
is not. In our experiments, we will show that this is due to
the reduced overconfidence of our classification algorithm.

A. Related Work

The existing literature on object classification is too large
to be mentioned exhaustively here. Therefore we only name
some of the most recent achievements. These include deep
belief nets [5], convolutional deep belief networks (CDBN)
[6] and fully connected Conditional Random Fields (CRFs)
[7]. Despite their impressive results, these classifiers focus



only on the classification rate, whereas we are are also
interested in the overconfidence of a classifier. Furthermore,
sparse coding techniques have become popular, and in par-
ticular the Hierarchical Matching Pursuit (HMP) algorithm
[3], which we also use to compute descriptors, however with
a classifier that is superior in performance compared to the
linear support vector machine (SVM) used there.

Our approach is formulated as an active learning method.
This research area is experiencing a growing interest in
the area of computer vision and robotics. For example,
Kapoor et al. [8] use active learning for object categorization
using a Gaussian Process classifier (GPC) where labels
are queried for data points that are classified with high
uncertainty. Triebel et al. [9] use a sparse version of the
GPC, the Informative Vector Machine (IVM) to actively
learn tra�c lights in urban tra�c images. In computer vision,
Vezhnevets et al. [10], as well as Wang et al. [11] use active
learning for interactive image segmentation. In contrast to
all these methods, we propose to use a boosting method
as an underlying classifier, because it is more e�cient in
terms of training and evaluation time. In that context, a work
that is very closely related to ours is that of Sa�ari et al.
[4], which proposes an e�cient multi-class online boosting
algorithm. We extend that approach using a similar idea as
presented in [12], with the di�erence that here we use it
for online boosting and with more theoretical justifications.
Concretely, we introduce a formal definition of over- and
underconfidence of a classifier on a given data set. This is
related to the intuitive notion of introspection introduced
by Grimmett et al. [1], however with the di�erence that
our formulation can explicitly quantify the inherent trade-o�
between a high number of detected misclassifications and
a high number of correct classifications that are not further
used for training.

II. Active Learning

The main di�erence between standard passive learning
and active learning is that, instead of strictly separating
between a training and a testing phase, the active learner
performs loops of training and testing, thereby incorporating
the information flow obtained from the teacher (e.g. a human
supervisor) into the loop. Fig. 2 shows a schematic flow
chart of a generic active learning algorithm. We note that,
while in general active learning can be used in many di�erent
contexts, we will use it for object classification in this work.
In the following, we will describe the indivudal components
of our framework in more detail.

A. Components of Active Learning
Similar to standard passive learning methods, in active

learning we start with an initial training set (X0,Y0), where
X0 = {x1, . . . , xN} are the N feature vectors with d di-
mensions, i.e. xi � �d, and Y0 = {y1, . . . , yN} are the
corresponding class labels, i.e. yi � {1, . . . ,C}. In this paper,
we assume the number of classes C as given, but usually
larger than 2. We note that, in contrast to passive learning,
active learners usually can deal with much smaller initial

Fig. 2: Active Learning flow chart. After an initial training step, the
classifier is presented new test data and reports label predictions and
confidence values (here: uncertainties). These are used to ask a human
supervisor for new ground truth labels, which subsequently are added to
the current training data. Then, the training process is repeated with the
extended training data until a stopping criterion is met.

training data sets, which is one major advantage of active
learning methods. The first step is then to train a classifier
with the initial training set, which we model as a function
f : �d � �C , i.e. each input feature vector x is mapped to
a prediction vector p � �C . We will give more details on
this in Sec. III. Next, a set of K data samples {x�1, . . . , x�K} is
drawn from the test data set X� and classified using f . Here,
the nature of X� defines the type and complexity of the active
learning problem: if X� is given beforehand and its size does
not change during learning, then we are concerned with pool-
based active learning. If, however X� is a potentially infinite
stream of data, then we have stream-based active learning,
which is significantly harder. In our work, we consider the
pool-based variant, although we aim to extend the approach
to stream-based learning in the future.

The result of the classification of {x�1, . . . , x�K} are the label
predictions y�1, . . . , y

�
K , where

y�k = arg max
c

(p1, . . . , pC), p = f (x�k). (1)

In addition to the label predictions, the prediction vectors
themselves also play an important role, because they can
be used to distinguish test points, where the classifier has a
high chance of correct classification from those where the
classification is likely to be incorrect. We refer to this as the
confidence of the classifier. This can be computed based on
the uncertainty of the classification, and we will give more
details below. Now, the key element of active learning is
the ability of the learner to query new class labels from the
human supervisor. This is usually done by selecting those
test points x�i , for which the classifier has a low confidence
and asking a ground truth label ŷi for them. Here, we note
that the number K of new test samples considered can be
used to bound the required human e�ort by querying only
the least confident ones. For K = 1 this would result in a
query for every sample, but for larger K the benefit becomes
obvious. Then, after the label query, the new data-label pairs
(x�i , ŷi) are added to the current training data (X j�1,Y j�1),
where j is the index of the current learning round, and the
learning process starts again until an appropriate stopping
criterion is reached. In our implementation, we use a fixed
number of learning rounds.

B. The Which-Question Problem

One important question in active learning is how to select
the data samples for which semantic information, i.e. in our



case class labels, are requested from the human supervisor.
We refer to this as the which-question problem. In the survey
of Settles [13] the following query strategies are summarized
to address this problem: uncertainty sampling, query-by-
committee, expected model change, expected error reduction,
variance reduction, and density weighting. Among these, the
most used method is the uncertainty sampling, and we also
use it in our implementation. Assume that the entries of the
prediction vector p returned by f for a test sample x� sum
up to 1, i.e.

�C
i=1 pi = 1. Then, each entry pi in p can be

interpreted as the probability that x� has label i. From this,
there are two common ways to compute uncertainty:

he(p) := �
C�

i=1

pi logC(pi) hb(p) := pi2/pi1 , (2)

where i1 and i2 are the indices of the largest and second
largest values of p, respectively. The first measure is the
normalized entropy, where the base of the logarithm is C so
that he always ranges between 0 and 1, and the second is
a variant of the best-vs-second-best (BVSB) method. Both
measures are usually very well suited for active learning,
while BVSB tends to perform slightly better for multi-class
classification tasks such as ours. With these definitions of
uncertainty h, we define the classification confidence as 1�h,
and we will use both terms in the following.

Now, to address the which-question problem, the standard
uncertainty sampling approach uses a confidence threshold
�c and decides to ask for a ground truth label ŷ for all
those data samples which, in the current learning epoch, have
been classified with a confidence lower than �c. This directly
raises two questions: What is a good choice for �c? And how
do we know that the classifier gives meaningful uncertainty
estimates so that uncertainty sampling actually makes sense?
While the first question will be answered in Sec. III-C, the
second one will be addressed next.

C. Under- and Overconfidence
A crucial point with the uncertainty estimates obtained

from the classification is the question, how much one can
rely on these estimates. Formally, our aim is to have a high
correlation between prediction uncertainty and incorrectness
of the classification (a similar idea was used by Zhang et al.
[14]). In [12], this correlation was measured using the point-
biserial correlation coe�cient. However, this turns out to be
too restrictive and only applicable in cases where the number
of correctly and incorrectly classified samples is roughly
balanced. Therefore, we take a di�erent approach. For a test
set X� of size K we define two functions u and o as follows:

u( f ,X�, Ŷ) :=
1

Kc

�

x��X�
I(y� = ŷ)h( f (x�)) (3)

o( f ,X�, Ŷ) :=
1

Kf

�

x��X�
I(y� �= ŷ)(1 � h( f (x�))), (4)

where I is the indicator function, Ŷ are the ground truth
labels, and Kf and Kc are the number of incorrectly and

correctly classified test samples, i.e. Kf + Kc = K. Thus, u
is the average uncertainty of the correct classified samples
and o is the average confidence of the incorrectly classified
samples. We will denote u as the underconfidence and o
as the overconfidence of the classifier. Intuitively, if all
incorrect classified samples have the maximum confidence
of 1 assigned, then the overconfidence reaches its maximum
value of 1. This is the worst case for active learning, because
the classifier is unable to give an indication that its predicted
class label is wrong. As a consequence, the algorithm will
never ask ground truth labels for the incorrectly classified
samples, and they can not be used for re-training. Thus, the
classification can not be improved.

Another extreme case is that of maximal underconfidence
u. Here, all uncertainty values h for correctly classified
samples are 1, i.e. the classifier is always fully uncertain,
although the corresponding predictions are correct. The
problem with this case is that active learning will be very
ine�cient, because very often the algorithm queries ground
truth labels for samples that are already correctly classified. It
is important to note that underconfidence and overconfidence
are in this definition completely independent quantities. In
particular, a classifier can be under- and overconfident at
the same time, namely when it is uncertain on the correct
predictions and certain on the wrong ones.

Despite the problems with ine�ciency caused by under-
confident classifiers, we will focus more on the task to
avoid overconfidence, as this has the more severe e�ect on
active learning. However, the problem here is that we can
not explicitly minimize o using a closed-form expression.
Also, we have to make sure that the overconfidence is
reduced simultaneously with the reduction of the training
error. To do this, we propose to extend a standard online
multi-class boosting algorithm in such a way that it also
takes classification confidences into account. This will be
described next.

III. Online Confidence Boosting

In principle, there are two di�erent ways to achieve
classification results with little overconfidence: either we use
a classifier that is already known to be less overconfident
than others, or we modify an existing algorithm so that
it is less overconfident. If we follow the first idea, then a
good choice for a classifier is the Gaussian Process classifier
(GPC), as was shown earlier [1], [15], because due to its
capability to marginalize over a range of potential models, its
uncertainty estimates are more reliable because they correlate
more with actual misclassifications (see [1] for more details).
One major problem however, is its huge demand in run time
and memory. Even though there are sparse and more e�cient
variants such as the Informative Vector Machine (IVM) [16],
the method is still hardly applicable for typical data sets in
mobile robotics. Furthermore, as we are investigating active
learning here, we have even stricter requirements on the run
time, because the user is involved in the learning process,
and learning should be done during operation of the robot.



Algorithm 1: Online Multi-class Gradient Boost [4]
Data: training data (X, y) with C classes
Input: number of weak learners M, loss function �,

agreement function a
Output: weak learners f1, . . . , fM

1 Initialize( f1, . . . , fM)
2 for n = 1, . . . ,N do
3 wn � 1
4 gn � 0
5 for m = 1, . . . ,M do
6 fm � UpdateWeakLearner( fm, xn, yn,wn)
7 pnm � fm(xn)
8 �nm � a(pnm, yn)
9 gn � gn + �nm

10 wn � ���(gn)

Therefore, we decided to use a classification framework
that is known to be e�cient and e�ective, and that can be
modified so that it is less overconfident. A recently developed
method with these requirements is the Online Multi-Class
Gradient Boost (OMCGB) algorithm of Sa�ari et al. [4] (see
Algorithm 1), which we describe next.

A. Online Multi-Class Gradient Boost
In addition to the training data, the OMCGB algorithm

requires three di�erent parameters as input: a fixed number
M of weak learners, a loss function � : �� �, and an agree-
ment function a : �C ��� �, which quantifies the amount
of agreement between a class label prediction f (xn) and the
corresponding ground truth label yn. After initialization of
the weak classifiers, the algorithm loops over all training data
points and updates all weak classifiers for every new training
sample (xn, yn). This online behaviour of the algorithm is
very attractive for our active learning framework, because
it avoids a recomputation of the underlying representation
whenever a new ground truth label is queried from the user
and added to the existing training set. As in o�ine boosting
methods, every training sample xn has an assigned weight
wn, which is first initialized to 1. Then, every weak classifier
is first updated with the new sample, its weight wn and its
ground truth label yn. Note that the weak learner itself also
must be an online algorithm, because otherwise the overall
boosting method would not be online. In our experiments we
used online random forests as weak classifiers.

The next step (line 7) is to obtain a label prediction pnm
for the new training sample. Then, the agreement with the
ground truth label is computed. In standard OMCGB, this is
defined as

ag(pnm, yn) = p(yn)
nm � 1/C, (5)

i.e. it is directly related to the prediction for class yn, here
denoted as an upper index into the prediction vector pnm.
The resulting agreement �nm is then accumulated, and a new
weight wn is computed for the sample from the negative
gradient of the loss function of the sum of agreements. In [4],

two di�erent loss functions are investigated, but with little
performance di�erence, so we decided to use the standard
exponential loss �(g) = exp(�g) known from AdaBoost.
Concretely, the computation in line 10 results in higher
weights for samples that disagree with the ground truth and
lower weights for those that do agree.

B. Extension to Confidence Boosting
As can be seen from Eq. (5), the agreement ag used

by standard gradient boost is only related to the prediction
itself, but not to the confidence of the prediction. To build
a classifier that takes both prediction and confidence into
account, we propose to use this agreement function:

ac(pnm, yn) = (�1)�
�
1 � h(pnm)

(C � 1)�

�
, (6)

where � = I(arg max
i

p(i)
nm �= yn). (7)

This means, that we measure agreement by the amount
of confidence, which is equal to one minus uncertainty.
In case of a correct classification, i.e. when � = 0, the
agreement simply amounts to the confidence of the current
weak classifier fm. However, if the classification is incorrect,
we actually have a disagreement, and we express this with the
– slightly modified – negative confidence. Our modification
is the term (C�1), by which we divide the uncertainty. This
has empirically shown to improve the classification results
substantially. To summarize, our agreement function is high
if the classification is correct and certain, and it is low if
we have an incorrect, but certain classification. Also note
that if the uncertainty is zero, i.e. when we completely trust
the classification, then the agreement is 1 for correct and
�1 for incorrectly classified samples. Thus, in this case, our
agreement function is even simpler than the original one
given in Eq. (5).

C. Adaptive Thresholding
As mentioned in Sec. II-B, active learning with uncertainty

sampling requires to specify the confidence threshold �c to
decide for which samples a ground truth label should be
queried. Usually, this threshold is a fixed parameter of the
algorithm that does not change during the learning process.
However, apart from the fact that it is in general di�cult to
find a good value for �c, having a fixed value often leads
to a poor performance either in terms of e�ciency or in
terms of classification rate. The reason is that there is an
inherent trade-o� in the choice of �c. If it is small, then the
number of label queries is low, thus increasing e�ciency
in the next learning round, but with a potentially lower
classification rate. In contrast, if �c is large we have a higher
chance of finding those samples, for which the classifier was
wrong, which is good to correct for misclassifications, but
it also increases the risk of re-learning already correctly
classified samples. In addition to this, �c should also be
chosen according to the level of over- and underconfidence
of the classifier. For example, if the classifier tends to be
overconfident, then a higher value of �c should be used to
increase the chances to find misclassifications. To address



this issue, in our implementation we use an adaptive method:
In every training epoch we compute confidence histograms
for correctly and incorrectly classified samples from the
previous epochs. Then we start a search at �c = 0 with a
positive step size until the fraction of false samples with a
confidence below �c equals the fraction of correct samples
with a confidence above �c. As we will see later in the
experiments, this method provides a good compromise, and
it uses a similar idea than the equal-error-rate in a precision-
recall graph.

IV. Experimental Results

To evaluate our algorithm, we performed three di�erent
experiments on six di�erent data sets. The first experiment
investigates how much Confidence Boosting actually reduces
the overconfidence in the class label predictions. In the sec-
ond, we analyze the impact of Confidence Boosting within
the active learning framework. And in the last experiment, we
compare the learning curve and the run time of Confidence
Boosting with those of a Gaussian Process Classifier, which
is known to perform particularly well in active learning. All
data sets and experiments are described in more detail next.

A. Data Sets

We used four data sets from the UCI machine learning
repository, and two sets from robotics. The UCI data sets
are ‘USPS’, ‘Pendigits’, ‘Letter’, and ‘DNA’. We used these
because they were also used for evaluation by Sa�ari et al.
[4], and our aim is to compare Confidence Boosting with
gradient boosting. The robotics data sets we used were an
RGB-D set provided by Lai et al. [17], and the 3D point
cloud data from Paul et al. [15]. From the first one, for which
we use the identifier ‘RGBD’, we extracted 89 pre-segmented
objects of 17 object classes, resulting in a total of 58372
RGB-D images. Then, we computed Hierarchical Matching
Pursuit (HMP) descriptors [3] on the depth channel. The
dictionary needed for the HMP features was learned on 5
classes out of 17, mainly for memory reasons. Then, the
data was split into a training set of 90% of the data and
an evaluation set of the remaining 10 %. The other robotics
data set, which we denote as ’Begbroke’, consists of 3D
point clouds from a car park with 6 classes. The data was
segmented automatically, and features were computed for
each segment (see [15]). In total, there were 1496 segments,
out of which we took 1000 for training and the rest for
evaluation. We used this data to be able to compare with
the multi-class GP classifier used in [15], both in terms of
run-time and classification performance.

B. Reducing Overconfidence

To measure how much Confidence Boosting actually re-
duces overconfidence, we computed histograms over the
confidences for correctly and incorrectly classified samples,
both for gradient boosting and for Confidence Boosting.
Fig. 3 shows the resulting histograms for gradient boosting
(GB) and Confidence Boosting (CB) on the ‘DNA’ data
set. The plots on the left show the confidence histograms

Fig. 3: Confidence histograms of gradient boosting and Confidence Boost-
ing on the ‘DNA’ dataset. The left plots show the histograms for the correctly
classified samples, the right ones show the histograms for the incorrect
samples. Confidence Boosting shifts all histograms to the left, resulting in
an overall decreased confidence. Note however that the false samples are
shifted even further, which leads to a lower overconfidence.

RGBD Begbroke USPS Letter Pendigits DNA
pGB 0.1326 0.3106 0.1978 0.1854 0.2804 0.1475
aGB 0.1064 0.2391 0.1653 0.1395 0.2192 0.1258
pCB 0.0981 0.1715 0.1624 0.1416 0.1682 0.0895
aCB 0.0960 0.1629 0.1515 0.1338 0.1684 0.0871

TABLE I: Overconfidence averaged over 100 runs. We compare passive and
active Gradient Boost (pGB and aGB) with passive and active Confidence
Boost (pCP and aCB).

for the correct classified samples, the right ones for the
incorrect samples (red bars depict either over- or under-
confident regions). As we can see, Confidence Boosting
tends to shift both histograms to the left, which means
that in general classification is more uncertain. This implies
that more false classifications are uncertain as well. Thus,
increasing the uncertainty in general reduces overconfidence,
but it also increases underconfidence. However, as we can
see, Confidence Boosting shofts the histograms for the false
samples more than the correct ones. A quantitative result
is shown in Table I. Note that, e.g. for the ‘DNA’ data
set, the overconfidence is lower both for passive and for
active learning when using Confidence Boosting. Although
this does not hold for all data sets (see, e.g. ‘USPS’), one can
say that in general the tendency is that Confidence Boosting
reduces the overconfidence.

To visualize the trade-o� between over- and underconfi-
dence, we use a plot type similar to a precision-recall curve.
On the x-axis, we plot for a given number of di�erent con-
fidence thresholds �1, �2, . . . the fraction of false classified
samples that have a confidence below the thresholds. On
the y-axis, we plot for the same thresholds the fraction
of correct classified samples for which the classification
was more confident than �i. Ideally, this curve stays close
towards the upper right corner of the plot. Fig. 4 shows
an example of such a plot for the ‘Pendigits’ data set,
both for gradient boosting and for Confidence Boosting.
We see that Confidence Boosting gives the opportunity to



Fig. 4: Left: Trade-o� curves for gradient boosting, Confidence Boosting,
and the GPC on the ‘Pendigits’ data set. Higher curves correspond to less
overconfident classifiers, curves that are further to the right represent a
lower underconfidence. We see that Confidence Boosting generally improves
over- and underconfidence compared to gradient boosting, and it is even
less underconfident than the GPC. Right: Average run times of Confidence
Boosting (blue) and the GPC (red) for each epoch (note the log scale).

RGBD Begbroke USPS Letter Pendigits DNA
pGB 0.2704 0.2668 0.1536 0.2628 0.1589 0.1410
aGB 0.1824 0.1463 0.1123 0.1876 0.0983 0.0867
pCB 0.1248 0.0568 0.0898 0.1161 0.0559 0.0811
aCB 0.1165 0.0517 0.0726 0.0840 0.0341 0.0724

TABLE II: Average classification errors over 100 runs.

‘detect’ more false classifications while at the same time
not loosing too many correct classifications. The plot also
shows how to choose a good confidence threshold �c for
active learning. While our adaptive method chooses the one
where the false and the correct classification rates are equal,
one could focus more on e�ciency by not loosing many
correct classifications (towards the right part of the graph)
or on classification quality by including more false classified
samples into the training set (towards the upper part).

C. Impact of Confidence Boosting for Active Learning

To quantify the e�ect of Confidence Boosting in the active
learning framework, we ran active learning on all 6 data
sets, once with standard gradient boosting and once with
Confidence Boosting. We repeated this 100 times with the
training sets randomly shu�ed to obtain results that are
independent on the data ordering. The mean classification
errors are given in Table II. Apart from the fact that active
learning performs better on all data sets than passive learning,
where training data was selected randomly and not based on
its confidence, we see that Confidence Boosting results in
lower classification errors. In particular, Confidence Boosting
with active learning performs best on all data sets.

The progress of the learning process for ‘Pendigits’ is
depicted in Fig. 5 (left). Here, the means and standard devi-
ations of the classification error are shown as a function of
the generated label queries. We see that Confidence Boosting
leads to better results and requires less label queries at the
same time. For comparison we also show results on passive
learning where the training data was as large as the one for
active learning was at the end. Thus, even though passive
learning uses the same amount of data, the active learner is
better after some learning epochs. Fig. 5 (center) explicitly
shows the number of label queries per epoch for three
di�erent data sets. Again, Confidence Boosting produces less
queries than Gradient Boosting. We relate this to the fact that
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Fig. 7: Normalized confusion matrices for active gradient boosting (GB) and
Confidence Boosting (CB) on the ‘Begbroke’ data set (see text for details).

Confidence Boosting results in a higher correlation between
uncertain and incorrect classified samples, which enables
the classifier to find more incorrect samples for re-training
while at the same time not loosing many correct classified
samples. The right part of Fig. 5 shows a comparison of
our results from Table II with those reported in [4] and
[17]. Note that [4] perform learning on the same data for
a number of rounds, which can not be compared to our
active learning epochs. Therefore we only compare to the
first round reported in [4]. Some qualitative results of our
approach are shown in Fig. 6.

D. Comparison to the GPC

In [1], [15] it was shown that a GPC tends to be much less
overconfident than other classifiers such as a Support Vector
Machine (SVM) or LogitBoost. However, here we show that
Confidence Boosting mitigates this issue at least for boosting
methods, and we relate that not only to the fact that the
confidence is used to compute the sample weights, but also
to the choice of the weak classifiers, namely random forests.
We argue that with this combination we have a very e�cient
classification framework that also reduces overconfidence in
a way that it comes close to that of a GPC. To back-up
this claim quantitatively, we ran a multi-class GPC on the
same data sets using an own implementation based on [18].
Unfortunately, for most data sets GPC training could not
be done e�ciently, therefore we only report results on the
‘DNA’ data set. Fig. 4 (left) shows that the GPC is only
slightly less overconfident than Confidence Boosting. The
classification error of the GPC for ‘DNA’ after 10 epochs
was 0.0552, which is slightly better than active Confidence
Boosting (see Table II), but at the cost of a much higher run
time (see Fig. 4, right).

We also compare our results on the ‘Begbroke’ data with
those reported in [15]. For that, we computed the same
normalized confusion matrices as in [15], although without
the underrepresented ‘Background’ class (see Fig. 7). The
figure shows that our active Confidence Boosting method
reaches a classification performance that is almost as good
as that of the GPC, but with a much faster computation time.



Fig. 5: Left: Learning curves for the ‘Pendigits’ data set. The x-axis shows the number of label queries generated by active learning. Both Gradient Boosting
and Confidence Boosting improve with more samples, but Confidence Boosting reaches lower errors and requires less label queries. For comparison, the
passive counter parts are shown where the same number of data points was used for training as the active learner has at the end. Center: Number of new
label queries used per epoch for ‘Pendigits’, ‘USPS’ and ‘Letter’. All curves start with a pool of 250 samples. We see that in each epoch less additional
queries are needed than in the previous one and that Confidence Boosting needs less label queries than gradient boosting. Right: Comparison of active
learning with the results reported in the literature. Active Confidence Boosting always performs best.
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Fig. 6: Qualitative results of our experiments. We show three di�erent objects from the RGBD data set, for which we computed HMP descriptors on the
depth information, i.e. colour is not used for classification. After 10 rounds of active learning, Confidence Boosting (CB) returned the correct label, while
gradient boosting did not. Note that CB even distinguishes the lime correctly from a lemon although there was no colour information used, i.e. even such
small di�erences in shape can be detected with our approach.

V. Conclusions

Object classification still remains a di�cult problem. How-
ever, active learning seems to be a very useful technique to
tackle this problem, even though it raises the questions of
training e�ciency and low overconfidence of the classifier.
While the latter can be handeled well using a Gaussian
Process classifier, this same method is often too slow for
online applications. In contrast, our proposed extension of
online multi-class gradient boosting is at the same time very
e�cient and reduces overconfidence over standard boosting,
coming close to that of the GPC. The result is an e�cient and
high performing active learning method, which gives good
results even on challenging state-of-the-art data in robotics.
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Stream-based Active Learning for
Efficient and Adaptive Classification of 3D Objects

Alexander Narr1 Rudolph Triebel1,2 Daniel Cremers1

Abstract— We present a new Active Learning approach for
classifying objects from streams of 3D point cloud data. The
major problems here are the non-uniform occurence of class
instances and the unbalanced numbers of samples per class.
We show that standard online learning methods based on
decision trees perform comparably bad for such data streams,
which are however particularly relevant for mobile robots that
need to learn semantics persistently. To address this, we use
Mondrian forests (MF), a recent online learning algorithm that
is independent on the data order. We present an extension
of that algorithm and show that MF are less overconfident
than standard Random Forests. In experiments on the KITTI
benchmark, we show that this leads to a substantially improved
classification performance for data streams, rendering our ap-
proach very attractive for lifelong robot learning applications.

I. INTRODUCTION

One major requirement for most modern robotic systems
is their ability to extract semantic information from their
observed input data. In general, semantic information can
be represented in many different ways, including drivable
and non-drivable areas for outdoor robots [1], annotated
road maps with lanes, intersections and road signs for self-
driving cars [2], or the position and orientation of door knobs,
hinges of doors for robots with manipulators [3]. In this
work, we focus on class labels of road participants such
as cars, pedestrians, or cyclists, although our approach can
also be used for other applications. The main idea is that
of persistent learning, i.e. the robot learns semantics with
new observations during operation and not from a previously
manually annotated data set. The benefits of this are two-
fold: first, the robot is able to adapt to new situations as new
observations directly modify its internal representations. And
second, learning is done mainly on those observations that
actually occur in the robot’s environment and not on the
much larger set of potential observations, i.e. it can be done
more efficiently.

However, as we will show in this paper, these benefits
come with a major difficulty: in contrast to an offline
recorded training data set, data that is perceived online is
highly correlated to previous observations. For example, an
autonomous car driving on a highway may observe many
other cars or motor cycles from many different view points,
which can all be added to a large, growing training data
set. This leads to a large, but very unbalanced data set,
because other road participants such as cyclists or pedestrians

1Computer Vision Group, Dep. of Computer Science, TU Munich, 85748
Garching, Germany [narr,triebel,cremers]@in.tum.de

2Institute of Robotics and Mechatronics, Dep. of Perception and Cog-
nition, German Aerospace Center (DLR), 82234 Weßling, Germany
rudolph.triebel@dlr.de

Fig. 1. Example situation from the KITTI benchmark data set with a
car, a cyclist and some pedestrians. The 3D point cloud data of this frame
was classified after actively learning semantics from a stream of 10 000
previous samples. The bottom left image shows the result from actively
learning an online Random Forest classifier, the right one shows the result
using a modified Mondrian forest instead. A green bounding box refers to
a correct classification, while red boxes are wrong predictions. As we show
in this paper, the better performance of Mondrian forests comes from their
higher capability to learn from streams of data.

are under-represented. As a consequence, identifying new
observations as instances of an unknown object class on
appearance is very hard, because standard online learning
methods are only able to specialize, but not generalize their
models with new data samples and therefore require many
samples from the new class. In the literature on Active
Learning, this is known as the distinction between pool-
based and stream-based learning. To address these problems,
we propose an Active Learning framework that uses a more
informed and more flexible classification algorithm based on
a recent machine learning method. The so-called Mondrian
forest has the major benefit that it is independent on the order
in which the data appears, and that it can handle unbalanced
data sets much better because its representation does not
actually depend on the ground truth class labels. As we show
experimentally, this leads to much steeper learning curves
even for the stream-based learning scenario.

Our work consists of three major contributions: First,
we provide modifications to the original Mondrian forest
algorithm, which lead to a better classification performance.
Second, we analyze Mondrian forests regarding their ten-
dency to make wrong predictions with low uncertainty, i.e.
their overconfidence, and we show that Mondrian forests
tend to be less overconfident than standard online random
forests. And third, we exploit this by setting up an active
learning framework using Mondrian forests as underlying



classifier. We show experimentally that this new Active
Learning method produces less label queries at a higher
prediction accuracy compared to online Random Forests, and
that it is particularly well suited for stream-based learning
problems such as those often encountered in robotics.

II. RELATED WORK

Our work has links to three different learning concepts:
incremental learning, online learning and Active Learning.
Incremental learning refers to “any online learning process
that learns the same model as [it] would be learnt by a batch
learning algorithm” [4]. Essentially, this means that it can
incorporate additional information from newly observed data,
e.g. new object classes. Thus, the benefit over offline learning
is that incremental learning requires less computation steps
when new data is available. An example of an incremental
learning method is Learn++ [5], an extension of AdaBoost.
The idea is to generate new hypotheses from additional
batches of training data and to update the ensemble of
weak classifiers accordingly. Another incremental method
are nearest class mean forests (NCMF) [6]. They consist
of random forests where the decision nodes are based on
nearest class mean classifiers [7]. In contrast to other random
forests, NCMFs are able to add new classes, because they
store parts of the underlying distribution of the feature
space in each node. Another popular incremental learning
approach is based on one-class Support Vector Machines
(SVMs) [8], [9]. The key idea is that the current SVM
model is updated on the new data and the support vectors
from the previous learning step. The main drawback with all
incremental learning methods is however, that they do not
provide a functionality to update the learned model from a
single new data observation, and they often require to store
at least a large fraction of the training data.

In contrast, online learning methods only use the infor-
mation from the next data sample, and they do not need
to re-use any of the previously observed samples. Recent
examples of online learning methods are given by the work
of Saffari et al. [10], who introduced online multi-class
Gradient Boost and online multi-class LP Boost. In contrast
to offline boosting, an online boosting method has a fixed
number of weak classifiers and the weak learners themselves
are online algorithms, for example online Random Forests
(ORF) [11]. The performance of these methods is very good,
but as we will show in the experiments, they have problems
when the training data is un-balanced.

Finally, our work makes use of an Active Learning frame-
work. A good overview of this topic is given by Settles [12].
Some applications of Active Learning include the work of
Kapoor et al. [13], who perform object categorization using
a Gaussian Process classifier (GPC), the work of Vezhnevets
et al. [14], as well as that of Wang et al. [15] who use active
learning for interactive image segmentation. In contrast to all
these approaches, we address the problem of stream-based
Active Learning as opposed to pool-based learning. More
details are given below.

Fig. 2. Generic Active Learning. Starting with an initial training round,
new test data are classified, resulting in label predictions and corresponding
uncertainties. Based on these, a human supervisor is asked for ground truth
labels, and these are joind with the current training data. Then, training is
repeated with the extended training data until a stopping criterion is met.

III. PERSISTENT LEARNING FOR MOBILE ROBOTS

Our goal is to develop an algorithm that learns semantic
information (e.g. object class labels) from a large input data
set in such a way that it a) adapts its internal representation to
new, unseen environments, b) only requires few interactions
with a human supervisor (“teacher”) and c) only costs little
computational effort when considering a new data sample.
The motivation for these aims arises from the intended
application in mobile robotics: robots that persistently learn
semantics must be able to cope with new situations, should
only ask a human when necessary (thereby increasing their
level of autonomy), and perform the required computations
fast enough to not block the functionality of the whole
system. To address the first two goals, researchers have
investigated active learning methods, and we will briefly
explain this in the following. The third goal refers to the
capability for online computation, i.e. to update the repre-
sentation without having to re-consider previously observed
data samples. In the following, we give some examples for
existing online learning methods. Finally, we highlight the
major difference of active learning for mobile robots as
opposed to other applications such as computer vision and
explain the typical drawbacks of standard online learning
methods for our purpose. This will motivate our proposed
approach presented in Sec. IV.

A. Active Learning

Fig. 2 shows a schematic flow of a generic active learning
framework. It starts with an initial training set (X0,Y0),
where X0 = {x1, . . . ,xN

} are N observations represented
as d-dimensional vectors and Y0 = {y1, . . . , yN} are ground
truth class labels, i.e. y

i

2 {1, . . . , C} with C � 2. Then, in
each learning round or epoch j = 0, 1, . . . , a classifier f

j

is
trained using (X

j

,Y
j

). This gives a mapping f

j

: Rd ! RC

that assigns a prediction p 2 RC to each input sample. Next,
a set of new observations X ⇤

j

= {x⇤
1, . . . ,x

⇤
K

} is considered
and classified using f

j

. The result are prediction vectors
{p⇤

1, . . . ,p
⇤
K

}. The key step is then to select a sub set of X ⇤
j

for a query of corresponding ground truth labels. A common
selection method uses the prediction uncertainties to decide
whether a query is triggered. From this query, new ground
truth labels Y⇤

j

are obtained and, together with the selected
observations, they are added to the current training data set
(X

j

,Y
j

). The resulting set (X
j+1,Yj+1) is then used to train

the classifier f
j+1 in the next epoch.



B. Online Learning
In principle, active learning can be performed with any

classification algorithm that is capable of providing uncer-
tainty estimates with class predictions for new samples.
However, in terms of efficiency standard offline learning
is not good for Active Learning, because it requires re-
training on all the data observed so far in every epoch. As a
consequence, the time needed for learning steadily increases
and all observed data samples must be kept in memory.
Therefore, online algorithms for learning are much more
useful. In the literature, many standard offline classification
methods have been converted into online methods, but one
remarkable contribution is the work of Saffari et al. [10],
which provides very efficient online multi-class learning
methods based on boosting. The key element in that work is
an online Random Forest, which is used as a weak classifier
in boosting. An online Random Forest combines online
bagging, random feature selection and the growing strategy
of extremely randomized trees [16], where the test functions
and thresholds are generated randomly. In contrast to an
offline node, an online decision node has to see a minimum
number ↵ of samples before splitting and a split has to
achieve a minimum gain �. For data sets that are roughly
uniformly sampled across the classes, this gives comparably
good classification results, but for non-uniform data and for
data streams this causes problems, as explained below.

C. Pool-based vs. Stream-based Learning
When we described the Active Learning framework, we

deliberately did not specify the way in which the test data
set X ⇤ is given. In principle, there are two ways to do this:
either X ⇤ is a fixed-size set of observations that are collected
beforehand, or it consists of a growing number of samples
that are continously observed and added to X ⇤. Thus, in the
first case we have a fixed pool of data, and the algorithm can
pick good samples to query from this pool, which is usually
very large. This is the most common application for Active
Learning. However, in mobile robotics, and in particular for
robots that are to learn semantics persistently, the second
scenario known as stream-based Active Learning is much
more relevant, because robots perceive streams of data, and
they should be able to learn from it continously. Therefore,
in this paper we consider stream-based Active Learning.

To highlight this distinction further, we performed the fol-
lowing experiment. We considered a large, standard bench-
mark data set and applied two online classification methods:
online Random Forests (ORF) and online multi-class Gra-
dient Boost (OMCGB) with ORF as weak classifiers (for
both methods see [10]). Then, we resampled the data in
such a way that the occurence of samples in each class
was distributed uniformly over the time line (see Fig. 3,
left and center) and applied again the online classification
methods. Evaluation was done on a hold-out set not used
for training, and we choose the KITTI data [17] for this
experiment (for more details on the used data set we refer to
the description in Sec. V-A). The resulting learning curves
are shown in the right plot of Fig. 3. As we can see, both

Fig. 4. Comparison between a decision tree and a Mondrian tree for a toy
example with three different classes (Figure inspired by [18]). The feature
space is defined in [0, 1]2 where x1 and x2 denote horizontal and vertical
axes. Top: The partition of the space of a decision tree with two axis aligned
splits at x1 = 0.55 and x2 = 0.65. Bottom: Embedded partition of the
space of a Mondrian tree where each node has an associated split time, and
the splits are committed only within the range of each sub tree.

online learning methods perform resonably well for the case
of uniform distributions of class occurences. However, on
the original data, where many objects of the same class can
appear for some time period but for others there are almost
no occurences, we have a significantly worse performance
of the online learners. The reason for this behavior is that
online Random Forests can not handle well data sets with
unbalanced classes and with a non-uniform distribution of
class occurences. Therefore, in this paper we propose a
different approach, which we describe next.

IV. PROPOSED APPROACH

The main drawback of online Random Forests is that their
structure strongly depends on the order in which the data
samples are observed. As soon as a split is made at a given
leaf node – thereby creating two new leaf nodes, this split
decision can not be revised. Also, ORFs can only grow
at the leaves, i.e. new samples can only refine the model,
but it can not be made more general by a new sample. A
novel algorithm that explicitly addresses these problems is
the Mondrian Forest by Lakshminarayanan et al. [18]. In
this section, we briefly review this algorithm and present
some modifications for an improved performance. Then, we
analyse it with respect to its tendency to associate wrong
classifications with a high uncertainty [19], a key feature for
application in Active Learning.

A. Mondrian Forests
The major difference between a Mondrian tree and a

standard decision tree is that Mondrian trees also store the
extent of the data that corresponds to each node. A simple
example with three classes is shown in Fig. 4. While the
decision tree uses splits that range over the entire potential
range of the data, the splits of a Mondrian tree only cover



Fig. 3. Left and center: Visualization of class occurences in the KITTI data set [17]. The x-axis shows the time axis represented as number of observed
samples, i.e. every new observation corresponds to a time step. On the y-axis we plot the ground truth class indices of the observed samples. Class 0
corresponds to ’car’, 3 to ’pedestrian’ and 5 to ’cyclist’. The left plot shows the situation of the original data, the center plot was created after uniformly
re-sampling the data. Right: Learning curves of two standard online learning methods: online Random Forests (ORF) and online multi-class Gradient
Boost (OMCGB), both evaluated on the original and the re-sampled data (“stream” vs. “random”). As we see, the performance of both methods for the
original data stream is significantly worse than for the resampled set.

the actual data range. This is achieved by keeping bounding
box information for each sub tree, i.e. each node v

j

stores
the lower and upper boundaries l

j

and u

j

of all data samples
X

j

= {x
j,1, . . . ,xj,nj} associated with the sub tree at v

j

,
where n

j

is the number of these samples. Note that the data
itself is not stored in the tree, only the bounding boxes. As
in random decision trees, splits are generated randomly, but
samples are drawn from an exponential distribution whose
rate parameter is proportional to the data extent of the sub
tree. Concretely, each node v

j

has an associated time step
⌧

j

, and the entire tree has a time horizon or budget �. Time
steps ⌧

j

increase with the depth of the tree and splits are only
created as long as ⌧

j

< �. Thus, � implicitly regulates the
depth of the tree. For clarity, Algorithm 1 shows in detail the
recursive computation of a Mondrian tree from a given data
set D

j

= (X
j

,Y
j

), a node index j and a budget �. Initially, j
is set to the root node index and D

j

contains the entire data
set1. Then, in each call of SampleMondrianBlock a new
node is created and the bounding box (l

j

,u

j

) computed (in
lines 3 and 4, upper indices i denote feature dimensions).
If all labels of the sub tree are equal, no split is inserted,
otherwise a new time parameter E is sampled and added
to the time step ⌧par(j) of the current parent node. Note that
large values of e

j

lead to a higher probability of small values
for E, i.e. large bounding boxes are more likely to be split
than smaller ones. If a split is inserted, the split dimension �

j

is sampled proportional to the extents of the dimensions, and
the split location ⇠

j

is sampeled uniformly along this extent.
Then, data is split into a left part D

jl and a right part D
jr ,

and the corresponding sub trees are generated recursively.

B. Un-pausing Mondrian Blocks
In the original algorithm, splits are not inserted for nodes

where all samples have the same label (see line 5 of Alg.
1). The authors call this “pausing” a Mondrian block, and
they do this to make Mondrian forests “comparable” to
standard Random Forests. However, from our experiments

1Note that Alg. 1 describes the offline method to build a Mondrian forest
from a given data set. For brevity, we omit the description of the actual
online method that updates the tree with a single new data sample [18].
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we found that this can cause a bad classification performance
of the algorithm, especially if many samples from the same
class are observed in a row. In that case, a large amount
of these samples will be lost, because the trees only store
the bounding boxes of the data. Therefore, if then samples
from a new class arrive, the inserted split can not take these
“lost” samples into account, which often leads to inadequate
splits. To mitigate this problem we define a split threshold
parameters ✓

s

, which determines the maximum number of
samples with the same label that can be contained in a leaf
node. Thus, we modify the conditon in line 5 into

AllIdentical(Y
j

) ^ n

j

< ✓

s

. (1)



C. Under- and Overconfidence

As mentioned above, our aim is to use Mondrian forests in
an Active Learning framework to achieve better classification
results for the important case of stream-based data. To do
this, an important question is whether the classifier is able to
provide useful confidence estimates with its label predictions.
In essence, it should be avoided that the classifier makes
wrong predictions with a high confidence (corresponding to
a low uncertainty), because in that case thresholding on the
prediction uncertainty will not lead to good label queries
(see Sec. III-A). In Mund et al. [19] this was denoted
as overconfidence, and a formal definition of over- and
underconfidence was introduced, which we briefly revise
here. Overconfidence is the average confidence of all incor-
rectly classified samples from a given test set (X ⇤

,Y)

⇤, and
underconfidence is the average uncertainty of all correctly
classified samples. Note that we define confidence as one
minus the uncertainty of a prediction. Active Learning with
a classifier that is overconfident leads to bad classification re-
sults, whereas underconfident classifiers reduce the learning
efficiency by generating too many label queries. Note that
this is independent on the actual classification performance
of the classifier, which is often measured in precision and
recall. Even a classifier that produces only very few wrong
predictions can be overconfident if its uncertainty on these
few incorrect predictions is too low. Such a classifier might
be very useful for offline applications, but not as much for
Active Learning as a non-overconfident but less accurate
classifier might be. Therefore, to test for suitability of Active
Learning, we need to analyse the classifier with respect to
its over- and underconfidence, which we do in Sec. V-D.

V. EXPERIMENTAL RESULTS

In this section, we show experimentally that Mondrian
Forests perform better on stream-based data, that they tend to
be less overconfident compared to standard Random Forests,
and that our modified version of Mondrian Forests outper-
forms state-of-the-art multi-class online learning methods
when used in an Active Learning framework2. Before, we
describe the details about the data and the features we used.

A. Data Sets and Feature Computation

Experiments were carried out on two different data sets:
one standard set that is frequently used in the machine
learning community and one benchmark set from a real
robotics application. The first one is named pendigits

and consists of 5620 samples of handwritten digits where
each sample is represented by 64 attributes and each of
the ten digit classes contains roughly the same number of
samples [20]. This comparably easy data set is very useful
for comparison with other incremental and online learning
methods. The second data set is from the KITTI benchmark
and consists of 18 streams of segmented 3D point clouds
from urban traffic environments [17], which we concatenate

2An implementation of our method is available under
https://github.com/SpeedyN/StreamBasedAL.git

TABLE I
ARTIFICIAL TRAINING SETS WITH TWO NEW CLASSES IN EVERY ROUND

Classes 0 1 2 3 4 5 6 7 8 9
S1 124 129 124 129 0 0 0 0 0 0
S2 124 128 124 128 252 247 0 0 0 0
S3 124 128 124 128 126 124 371 378 0 0
S4 124 128 124 128 126 124 124 126 495 504
T 55 57 57 56 55 55 56 55 55 56

to one long stream. Each of the 25,090 segments corresponds
to a 3D bounding box containing points that represent a given
object candidate. For each such candidate, we compute a 60-
dimensional feature vector as proposed by Himmelsbach et
al. [21]. These features consist of global characteristics such
as box volume and mean intensity, as well as of distributions
of local features such as scatterness or flatness. Not only can
these features be computed in real time, but they are also
comparably low-dimensional (as opposed to HMP features
[22], for example, with 14,000 or more dimensions). This
is important when using Mondrian forests, because their
additional memory requirements are particularly evident for
high-dimensional features. For the test data set we split each
of the 18 sub sets at the ratio 2/3 to 1/3 and obtain a stream
of 16,000 training samples and a set of 9,090 test samples.

B. Adding new classes
In the first experiment, we artificially created a situation of

newly observed classes. First, we divided the pendigits

data set into five sub sets S1, . . . , S4 and T as shown in
Table I (numbers correspond to occurences of samples per
class). The sets S1, . . . , S4 consist of samples from a growing
number of classes, while T was used for testing. Then,
we applied a number of incremental and online learning
methods, where each time we started training on S1 and then
increased the training set by the next sub set S2, S3, S4 be-
fore re-training. This was done for two incremental learning
methods, namely MSVDD [8] and MOCSVM [9], and four
online learning algorithms, namely online Random Forests
(ORF), online multi-class Gradient Boost (OMCGB), online
multi-class LPBoost (OMCLP) [10]), and Mondrian forests
(MF) [18]. The results are given in Table II. As we can

TABLE II
RESULTS FOR THE LEARNING SCENARIO OF TABLE I

Data sets S1 S2 S3 S3

MSVDD 39.2 % 58.68 % 79.21 % 98.23 %
MOCSVM 39.8 % 59.25 % 77.95 % 95.18 %

Mondrian Forests 39.21 % 58.78 % 78.36 % 95.21 %
ORF 33.87 % 53.57 % 72.02 % 87.24 %

OMCGB 29.48 % 34.67 % 59.28 % 60.03 %
OMCLP 27.02 % 39.44 % 60.78 % 63.10 %

see, incremental learning methods generally perform better,
which is no surprise as they can rely on more exploitation
of the training data. However, from the online methods the
Mondrian forests clearly perform best.

To increase the difficulty of the learning problem, we ran
a second experiment, where only classes 0 and 1 were used
for initial training. Then, in each learning round, we added



Learning additional classes Influence of splitting

Fig. 5. Left: Results of incremental learning on “pendigits” . The
experiment starts with samples from two classes and adds all samples
from the next class in every round. Right: Experiments on the same data
with varying thresholds ✓s to split nodes with uniform class labels (“un-
pausing”). Performance is substantially increased using these artificial splits.

all samples from the next class for re-training. This can be
seen as the worst case scenario, and it is reflected by the
bad performance of the standard online learning methods
(see Fig. 5, left). Only the Mondrian forests can handle this
hard case comparably well.

C. Benefit of Mondrian block unpausing

As mentioned in Sec. IV-B, we modify the original Mon-
drian forest algorithm in an important detail by artificially
adding splits in nodes that consist only of samples with the
same class label. To show the benefit of this, we plot the
results for different values of the splitting threshold ✓

s

in
Fig. 5 (right). We see that the earlier we decide to split
these nodes, the better is the result. We note however that
there is a trade-off with the depth of the trees, which leads
to higher memory and run-time requirements. In practice,
a value of ✓

s

= 20 has proven to be a good compromise
between efficiency and classification performance.

D. Under- and overconfidence

To evaluate under- or overconfidence of Mondrian forests
we generated confidence histograms for correctly and incor-
rectly classified samples on a test set from the KITTI set (see
Fig. 6). From the histograms in the first row, we see that in
the beginning, when only few training samples are available
(250 in our case), the ORF is much more overconfident
than the MF, while underconfidence is not much different. In
numbers we obtained overconfidences of 0.415 vs. 0.820 for
the MF and the ORF respectively and 0.157 vs. 0.116 for the
respective underconfidences. This difference is smaller later,
when the training set consists of 16, 000 samples (see bottom
row in the figure). Here, the numbers are 0.529 and 0.583

for overconfidence and 0.126 and 0.132 for underconfidence
of MF and ORF. However, for good classification results it
is more important to reduce overconfidence already for small
training sets, because then the samples that are incorrectly
classified but detected as such have a stronger influence and
can server better to improve the learned model.

E. Pool-based vs. stream-based Active Learning

In the last set of experiments, we evaluated the perfor-
mance of the MF algorithm for the stream-based scenario.

KITTI dataset - Active Learning

Fig. 7. Left: Learning curves of the Mondrian forest for the “re-sample”
experiment from Sec. III-C. The MF classifier can deal much better with the
data stream. Right: Classification accuracies for Active Learning using an
MF and an ORF, where only 5%, 10% and 20% of the most uncertain data
points are queried. Again, the MF clearly outperform the standard ORF.

First, we ran the same experiment as described in Sec. III-C,
and the result is given in Fig. 7 (left). We can see that the
MF classifier increases its classification accuracy much faster
than the ORF, even in the stream-based setting, and it also
reaches a higher level (about 90% accuracy). We then tested
the Active Learning scenario, where new label queries were
generated after every 1,000 data samples. From these, we
only used the most uncertain predictions for querying and
re-training, and this fraction varied between 5% and 20%,
i.e. from 50 to 200 samples per learning epoch. The result is
shown in the right plot of Fig.7. The plot clearly shows that
the MF can improve its classification accuracy even when
trained only on a very small fraction of the data. Thus, on
one side the MF classifier provides a higher level of learning
autonomy by generating less queries and on the other side it
can deal with the hard problem of learning from data streams.
This is also reflected by the qualitative results in Fig. 8.

VI. CONCLUSIONS

In robotics, stream-based learning applications are much
more relevant than standard pool-based approaches, because
robots need to be adaptive to new environments. Data streams
are however much harder to learn from, but we present a very
effective and efficient approach to handle such situations.
Based on a recent online learning algorithm, we show that
Active Learning can be performed successfully on streams
of data. While in our experiments we considered the problem
to learn class labels, our approach is also useful for many
other applications where semantic information must be au-
tomatically inferred from input data streams.
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[3] T. Rühr, J. Sturm, D. Pangercic, M. Beetz, and D. Cremers, “A
generalized framework for opening doors and drawers in kitchen
environments,” in Int. Conf. on Rob. and Autom. (ICRA), 2012.

[4] C. Sammut and G. I. Webb, Encyclopedia of Machine Learning, 2010.



(a) MF - 250 - correct (b) MF - 250 - false (c) ORF - 250 - correct (d) ORF - 250 - false

(e) MF - 16000 - correct (f) MF - 16000 - false (g) ORF - 16000 - correct (h) ORF - 16000 - false

Fig. 6. Confidence values of a Mondrian forest (a, b, e, f) and an online Random Forest (c, d, g, h) on the KITTI data set. The upper row shows the
confidence histograms after training on 250 samples and the lower row results after learning on 16,000 samples. We see that the MF is less overconfident,
particularly in the beginning with little training data, as it makes wrong predictions with lower confidence (or, equivalently with higher uncertainty). At
the same time, it is not more underconfident, as the correct predictions are mostly made with high confidence.

Fig. 8. Further results on the scene given in Fig. 1. From left to right, we show the next five data frames (point clouds), again after training on a stream
of 10000 samples. The upper row shows the result for ORF, the lower row the MF result. Again, most classifications are done correctly by the MF (green
boxes), while the ORF has many false classifications (red boxes).

[5] V. Polikar, Robi and Upda, Lalita and Upda, Satish S and Honavar,
“Learn++: An incremental learning algorithm for supervised neural
networks,” Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 31, pp. 497–508, 2001.

[6] M. Ristin, M. Guillaumin, J. Gall, and L. V. Gool, “Incremental
Learning of NCM Forests for Large-Scale Image Classification,”
Computer Vision and Pattern Recogn. (CVPR), pp. 3654–3661, 2014.

[7] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, Advanced Topics
in Computer Vision, ser. Adv. in Computer Vision and Pattern Recogn.,
G. M. Farinella, S. Battiato, and R. Cipolla, Eds. Springer, 2013.

[8] L. Yang, W.-m. Ma, and B. Tian, Advances in Neural Networks, ser.
LNCS. Springer, 2011, vol. 6676, ch. New Multi-class Classification
Method Based on the SVDD Model, pp. 103–112.

[9] A. K. N. Ho, N. Ragot, J. Y. Ramel, V. Eglin, and N. Sidere,
“Document classification in a non-stationary environment: A one-class
svm approach,” in Proc. of the Intern. Conf. on Document Analysis
and Recognition (ICDAR), 2013, pp. 616–620.

[10] A. Saffari, M. Godec, T. Pock, C. Leistner, and H. Bischof, “Online
multi-class lpboost,” in CVPR, 2010.

[11] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof, “On-line
random forests,” Computer Vision Workshops (ICCV Workshops), pp.
1393–1400, 2009.

[12] B. Settles, Active Learning. Morgan & Claypool, 2012.
[13] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, “Gaussian

processes for object categorization,” Intern. Journal of Computer

Vision, vol. 88, no. 2, pp. 169–188, 2010.
[14] A. Vezhnevets, J. Buhmann, and V. Ferrari, “Active learning for

semantic segmentation with expected change,” in CVPR, 2012.
[15] D. Wang, C. Yan, S. Shan, and X. Chen, “Active learning for

interactive segmentation with expected confidence change,” in Asian
Conf. on Computer Vision, 2012.

[16] L. Geurts, Pierre and Ernst, Damien and Wehenkel, “Extremely
randomized trees,” Machine learning, vol. 62, pp. 3–42, 2006.

[17] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in Proc. of Conf. on
Computer Vision and Pattern Recognition (CVPR), 2012.

[18] B. Lakshminarayanan, D. M. Roy, and Y. W. Teh, “Mondrian Forests:
Efficient Online Random Forests,” in Advances in Neural Information
Processing Systems (NIPS), 2014.

[19] D. Mund, R. Triebel, and D. Cremers, “Active online confidence
boosting for efficient object classification,” in Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA), 2015.

[20] E. Alpaydin and C. Kaynak, “Optical Recognition of Handwritten
Digits Data Set,” 1995.

[21] H. Himmelsbach, M. and Luettel, T. and Wuensche, “Real-time Object
Classification in 3D Point Clouds Using Point Feature Histograms,”
in Intern. Conf. on Intell. Robots and Systems (IROS), 2009.

[22] L. Bo, X. Ren, and D. Fox, “Hierarchical matching pursuit for image
classification: Architecture and fast algorithms,” in Advances in neural
information processing systems (NIPS), 2011, pp. 2115–2123.



Semi-supervised Online Learning for
Efficient Classification of Objects in 3D Data Streams

Ye Tao Rudolph Triebel Daniel Cremers

Abstract— We present a novel learning algorithm especially
designed for challenging, large-scale classification problems in
mobile robotics. Our method addresses two important aims:
first it reduces the required amount of interaction with a human
supervisor, which increases the level of autonomy of the learning
process. And second, it has the capability to update its internal
representation online with every new observed data sample,
which makes it adaptive to new environments. The proposed
method is based on a combination of two established methods,
namely Online Star Clustering and Label Propagation, but
it extends and modifies these in such a way that significant
shortcomings such as classification inaccuracy and run time
inefficiency can be resolved. In experiments on large benchmark
data sets, we show that our approach can quickly learn to
classify 3D objects with a significantly reduced amount of
required ground truth labels for training.

I. INTRODUCTION

With the advent of fast, high-resolution and at the same
time affordable 3D sensors, mobile robotic platforms have
recently experienced an enormous progress in terms of
their perceptual capabilities. RGB-D cameras have become
a standard equipment for mobile robots, and the recent
achievements in RGB-D sensing suggest that these sensors
will be the main exteroceptive sensor source in the near
future. Their impact mainly stems from their high resolution,
evidenced in very densely sampled resulting 3D point clouds,
and from their ability to sense depth and color simultaneously
and at high frame rates. However, while depth sensors
are also used widely in other application areas such as
surveillance tasks, in mobile robots there are at least two
specific major challenges to solve. First, the large amounts
of data produced by these sensors places particular problems
for the learning algorithms used for automated semantic
annotation tasks such as 3D object classification or semantic
mapping. In principle, the major design goal for a mobile
robotic platform is to be as autonomous as possible, i.e.
interactions with human supervisors should be reduced to a
minimal amount1, and this includes interactions needed for
learning, e.g. when labeling ground truth data for training.
Therefore, to be autonomous, a robot should ask for semantic
information only rarely, but this is hard when the acquired
amount of data is large. And second, mobile robots usually
operate in frequently changing environments, and they need
to take decisions quickly and based on their current situation.
Thus, the employed learning algorithms need to be adaptive,

All authors are with Dep. of Computer Science, Technical University
of Munich, Boltzmannstrasse 3 85748 Garching, Germany [ye.tao,
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1Note that this is different from interactions with human users, where the
robot itself provides a service and does not depend on human input.

which means that many standard offline learning techniques
are inadequate due to their computational requirements and
their inability to modify internal representations on the fly.

Therefore, in this paper we propose a learning algorithm
that simultaneously reduces the required amount of human
effort in terms of providing ground truth label information,
and operates online in the sense that it incorporates new
information directly to update and refine its internal represen-
tation. The result is a fast and effective learning method that
is particularly suited for semantic annotation of large 3D data
streams, as we will show in the experiments. We achieve that
using a novel online clustering algorithm that is particularly
taylored for semi-supervised learning. Inspired by established
graph-based methods such as Online Star Clustering [1] and
online Affinity Propagation [2], our approach also uses an
undirected, bipartite graph, however with the difference that
non-exemplar nodes can not turn into exemplar nodes during
vertex insertion, and that we use a more efficient nearest-
neighbor search when inserting a new vertex. This and some
other modifications make our clustering method more useful
for subsequent label propagation, a fast and effective semi-
supervised learning method. As we show in experiments on
standard benchmark data, our method is able to efficiently
learn 3D objects from large data streams online and with
only little input from a human supervisor.

II. RELATED WORK

Our work combines semi-supervised learning (SSL) with
online clustering and is therefore mostly related to these two
areas2. For SSL, there is a good overview text book edited
by Chapelle et al. [3], where detailed theoretical background
is given, as well as a description of the most common
techniques, including transductive Support Vector Machines
(tSVM) [4], Gaussian Process classification (GPC) with null-
category noise model [5] and Label Propagation [6]. Our
proposed method mostly relates to the latter one, mainly due
to efficiency reasons and because, as a graph-based approach,
Label Propagation is very well suited for combination with
efficient graph-based online clustering methods, which we
employ in our approach. In that context, a number of earlier
works have been proposed, where the most relevant ones
are online k-means clustering [7], [8], online Expectation
Maximization (EM) [9], [10], online affinity propagation
(AP) [2], and online star clustering (OSC) [1]. The latter
two approaches have the big advantage over k-means and EM

2Note however the difference to self-supervised learning where semantic
information comes from a different sensor source (see, e.g. [17])



Fig. 1: Overview of our online learning approach for 3D object classification from data streams. See text for details.

that they do not require the number of clusters to be specified
beforehand. Instead, they use a similarity threshold and deter-
mine the number of clusters implicitly. Our approach builds
on OSC because it is more efficient than AP clustering (see
also [11] for an application of OSC to unsupervised scene
classification). However, as we will show, OSC has some
drawbacks for our application in semi-supervised learning.

To compute features from 3D input data, we use Hierarchi-
cal Matching Pursuit (HMP) [12], an unsupervised learning
algorithm based on sparse coding. In the area of unsuper-
vised feature learning, many different approaches have been
proposed, including Restricted Boltzmann Machines (RBM)
[13], convolutional deep belief networks [14] and denoising
autoencoders [15]. However, recent results on HMP-based
classification [16], [12] show that they are very powerful and
at the same time comparably efficient in learning. Therefore,
we decided to use HMP features for our work.

III. OVERVIEW

Fig. 1 shows a schematic overview of our online 3D object
classification method. We see two time lines: one on the top,
which represents the incoming 3D point clouds at each time
step, and one at the bottom for the status of the internal
graph representation per time step. The depicted situation
consists of an existing cluster graph at time step t3 and a
new sensor observation (point cloud) from the next time step
t4. In our pipeline, we first compute Hierarchical Matching
Pursuite (HMP) features [16] for each pre-segmented point
cloud in the current frame. We assume that the individual 3D
objects are segmented with their 3D bounding box. Such a
segmentation can be obtained from a tracking algorithm that
separates moving objects from the static scene parts or by
ground plane segmentation (see for example [18]). We note
that, depending on the 3D sensor a pre-processing step might
be required before feature computation. In the example here,

data is obtained from a 3D laser scanner, which means that
we have to create depth images from the point clouds before
being able to apply HMP feature computation. Examples are
shown in the center box in the upper part of the figure.
Of course, when using RGB-D cameras, depth images are
already available and need not to be computed explicitly.

The obtained HMP feature vectors are then inserted as
vertices into the cluster graph. This graph distinguishes
between center and satellite vertices, where the centers are
exemplars for the satellites connected to them (details follow
in Sec. V). Thus, a newly added vertex can either end up
as a satellite of an already existing center, or it can be
itself a new center. This is exemplified in the figure with
the pedestrian and the cyclist, where the former builds a
new center vertex, and the latter is associated to a new
satellite. Then, the algorithm queries ground truth labels for
the new centers if there are any, and infers class labels for the
remaining vertices using Label Propagation. Our reasoning
behind this is that centers are good potential representatives
of an object class, particularly if they have many satellites
attached, which by construction of the graph are similar
to them. Thus, propagating labels from centers to satellites
will lead to less misclassifications and fewer label queries
than, e.g. propagating from satellites to centers. Note that the
number of centers directly influences the performance of the
algorithm: fewer centers lead to less label queries, making the
learning algorithm more autonomous, but at a higher chance
of misclassifications as more satellites will be different from
their centers, i.e. the clusters will be less pure. The challenge
is therefore to obtain pure, but few clusters (centers) at the
same time. In Sec V we show how we address this trade-off,
but first we consider a different approach combining two
standard methods, and we show the drawbacks there that
motivate our own method.



(a) vertex insertion (b) updated star graph

Fig. 2: Vertex insertion in the standard Online Star Clustering
algorithm [1]. (a) A new vertex is inserted (yellow diamond)
and all neighbors that are more similar than # are determined
(dashed lines). In this case, this results in a new center,
because the degree of the new node is higher than those of
the adjacent centers. (b) Rearranging requires removing and
adding some edges and changing the role of some vertices.

IV. ONLINE SEMI-SUPERVISED LEARNING

As a starting point, and also as a baseline for comparison
with our proposed method, we consider here a straightfor-
ward combination of two concrete algorithms: Online clus-
tering using the algorithm of Aslam et al. [1] and subsequent
semi-supervised learning using Label Propagation [19].

A. Online Star Clustering

The main idea of the Online Star Clustering (OSC) algo-
rithm [1] is to find a minimal number of maximal star-shaped
subgraphs from a given thresholded similarity graph (“min-
max criterion”). This means that the algorithm starts with
a graph G

#

that consists of nodes v

i

for each data sample
and edges e

ij

connecting two nodes that are more similar
than a given threshold #, i.e. s(v

i

, v

j

) � # where s is a
similarity measure. Then, it identifies some vertices as cluster
centers and the remaining ones as satellites and removes all
edges from G

#

that connect two satellites or two centers.
The assignment of centers and satellites is made such that
the number of clusters is minimal and the cluster sizes are
maximal, and cluster centers have a higher degree (number
of incident edges) than their connected satellites. For our
application, the OSC algorithm has two major advantages
over other clustering methods: First, it does not require the
number of clusters to be given. Instead, its only parameter
is the similarity threshold #, which implicitly influences the
number of resulting clusters. And second, the creation of the
graph can be done online, i.e. after insertion of a single new
vertex the min-max criterion is still valid. To guarantee this,
in some cases the algorithm needs to re-assign centers and
satellites and also to remove and add edges. An example of
this is shown in Fig. 2.

The original OSC algorithm uses the cosine distance as
a similarity measure between two connected vertices v

i

and
v

j

, i.e.
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k = cos(↵), (1)

where ↵ is the angle between the vectors that correspond to
v

i

and v

j

. The authors show that with this similarity measure

the similarity between two satellite vertices u

j1
i

and u

j2
i

that
are connected to the same center c

i

is bounded by

s(u
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i
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j2
i

) = cos � � cos↵1 cos↵2 +
#

1 + #

sin↵1 sin↵2,

(2)
where � is the angle between the two satellites and ↵1 and
↵2 are the angles between the satellites and the center c

i

.
The interesting thing about this formulation is that it can
be completely expressed in terms of dot products between
feature vectors, provided that these are normalized. That
means, we can also use other similarity measures instead
by replacing dot products with Mercer kernels, for example
the Gaussian kernel
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with a variance parameter �, or the inverse city block kernel
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whith a constant parameter ⇠. Thus, we then obtain a
kernelized OSC algorithm. In the experiments (Sec. VI), we
show that an appropriate kernel can substantially improve
the measure of similarity.

B. Label Propagation
The OSC algorithm is a classical unsupervised learning

method, i.e. it does not incorporate ground truth information
for learning. However, in our application, we aim for au-
tomated semantic annotation, and this information can only
come from some human supervisor. Therefore, we combine
clustering with a semi-supervised learning (SSL) method
by assigning ground truth labels to the center vertices and
infering the labels for the unlabeled satellite vertices. In
particular, we use Label Propagation (see [19], Algorithm
11.2). This method first computes an affinity matrix W where
the entries are the node similarities, i.e. w

ij

= s(v

i

, v

j

) and
it sets w

ii

= 0. It then chooses a parameter ↵ 2 (0, 1) and
a small ✏ > 0 and computes µ := ↵/(1 � ↵). With this,
it iterates over all vertices and updates the labels y

i

of the
vertices v

i

in every iteration. We model class labels as vectors
of a fixed length K, which determines the number of classes.
A vertex v

i

has then the class label k if y

k

i

= 1 and all
other entries of the vector y

i

are zero. For unlabeled vertices,
y

i

is equal to the zero vector. The operations performed in
each iteration of Label Propagation are as follows: If v

i

is a
labeled (center) node with an associated ground truth label
y

(0)
i

then the update rule at iteration t = 1, 2, . . . is

y
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If v
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is an unlabeled satellite vertex, then the rule is
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. (6)

These rules are computed until a convergence criterion is
reached. The described Label Propagation (LP) algorithm



is formulated as an offline algorithm, although one could
think of an extension to the online case. However, due to the
shortcomings of this combined ‘OSC+LP’ approach, which
we describe next, we do not consider an online LP version,
but instead suggest an improved algorithm in Sec. V.

C. Drawbacks of the OSC+LP Approach

The presented combination of OSC and LP has at least
three major drawbacks: First, it requires a nearest-neighbor
search for each newly inserted vertex over the entire existing
data set. This increases the run time significantly when the
data set is very large. Second, due to the requirement that
the min-max-criterion has to be fulfilled always, it can lead
to many changes from satellite vertices to center vertices
and vice-versa. This is not only inefficient in terms of
computation time, but it also causes more label queries,
especially if satellites turn into centers. In a sense, the fact
that OSC guarantees a minimal number of clusters remedies
this somehow, because with fewer clusters there are less label
queries. However, as we perform label queries in every time
step, one has to consider all vertices that at some point in the
past have been centers, i.e. this includes all those satellites
that where flipped from centers. And the third problem
with OSC+LP is that the algorithm uses a fixed similarity
threshold #, which results in many isolated vertices that are
not connected to any other one. These outliers again increase
the required number of label queries, because each of them
is considered a center of a cluster with size 1. In the next
section, we propose our improved version of the algorithm,
which particularly mitigates these three drawbacks.

V. PROPOSED APPROACH

Assume we are given a stream of data points x1,x2, . . .

with x

i

2 Rd. Our aim is to incrementally build from these
data a graph G = (V, E ,Y, P, S), where V is the set of
vertices, E are the edges, Y are the class labels for each
vertex, P are the properties of the vertices and S are the
similarities assigned to each edge. Concretely, each vertex
v

i

2 V can have either the property ‘center’ or ‘satellite’,
and each edge e

ij

2 E connecting vertices v

i

and v

j

has
a similarity value s

ij

based on a distance measure between
v

i

and v

j

. The center vertices play the role of exemplars,
i.e. they are representatives of a whole set of other vertices,
namely the satellites connected to them. In any stage of the
algorithm, the graph G is bipartite, i.e. there are only edges
connecting centers with satellites, and never edges between
two centers nor between two satellites. The main idea of our
semi-supervised online learning algorithm is to use only the
centers to query ground truth class labels and to use these
to infer the labels for the satellites, i.e. in a similar way
as is done in label propagation. The individual steps of our
algorithm are described next.

A. Vertex Insertion

As mentioned, our algorithm is inspired by the Online
Star Clustering (OSC) approach [1]. This means, we also
aim for a vertex insertion method that is efficient and at the

Fig. 3: Vertex insertion into the graph G. At time t, we insert
vertex v

t

(yellow diamond). For that, we first compute the m

center vertices ĉ1, . . . , ĉm that are closest to v

t

(blue filled
circles). Each of these centers has satellite vertices attached,
here indicated with lines. The center closest (or most similar)
to v

t

is denoted c

max

t

. Then, for i = 1, . . . ,m we compute
the similarities s(v

t

, ĉ

i

) and s(v

t

, c

max

t

) (dashed red lines),
as well as the similarities between v

t

and all satellites u

j

i

attached to center ĉ

i

(dotted green line). All such satellites
that fulfill the condition in Eq. (8) are detached from ĉ

i

and
connected to v

t

, which then becomes a center vertex.

same time produces graphs that correspond to a good data
clustering. However, in standard OSC, the major focus is
laid more on the latter by guarateeing that after insertion the
graph still consists of a minimal set of maximal star-shaped
sub-graphs (i.e. clusters). While this is a good property for
pure unsupervised learning applications, in semi-supervised
learning as we propose it, it is more advantageous to have
purer clusters, even if the number of clusters is not minimal.
Concretely, this means that we do not stricly connect a new
vertex to its closest neighbors in the graph as in OSC, thereby
accepting that the number of clusters can be sub-optimal.
This slight drawback is however outweighed by the fact that
our insertion is more efficient and produces purer clusters.

For the description of our insertion method, we define the
set of centers C

t

at time t as C
t

= {v
i

2 V
t

| p
i

= ‘center

0}
and its cardinality as C

t

. With this, the first step of insertion
is to find a fraction q 2 [0, 1] of centers in C

t�1 that are most
similar to the new vertex v

t

. This has two advantages: First, it
does not require a fixed similarity threshold for connecting
vertices, which avoids un-connected outliers. And second,
it is more efficient than finding neighbors in the entire set
of vertices V

t

, because C
t

is usually much smaller than V
t

.
Thus, formally we find an index ordering ⇡ : N ! N so
that s(c

⇡(i), vt) > s(c

⇡(i+1), vt) for all i = 1, . . . , C

t

� 1,
where we denote the similarity s as a binary function of
vertices, and the elements of C

t

are c1, . . . , cCt . Furthermore,
we define the center that is most similar to v

t

as c

max

t

,
i.e. c

max

t

:= c

⇡(1). Then, the result of this first step is a
subset ˆC

t

⇢ C
t

consisting of the first m sorted centers, i.e.
c

⇡(1), . . . , c⇡(m) where m = bqC
t

c.
In the next step, we search for neighbors of v

t

in the set
of satellites that are connected to centers in ˆC

t

. Thus, for



each of the m most similar centers ĉ1, . . . , ĉm we loop over
all attached satellites u

j

i

and decide whether they should be
detached from their center ĉ

i

and reconnected to v

t

, which
then becomes a new center, or whether v

t

is simply added
as a satellite to c

max

t

. Our criterion for this re-connection
step is based on the similarity of the satellites u

j

i

and v

t

, but
also on the general similarity of the cluster represented by
ĉ

j

. Concretely, we compute the normalized similarity

s̄(v

t
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i

) :=

s(v
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i

)

s(v
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, c
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t

)

(7)

and do a re-connection whenever

s(v

t

, u

j

i

)s̄(v
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, ĉ

i

) > s(u

j

i

, ĉ

i

). (8)

If the condition in Eq.(8) is not valid for any satellite u

j

i

, we
connect v

t

as a new satellite to c

max

t

.

B. Minimal Average Cluster Size
As mentioned in Sec. IV-C, one major problem with

standard OSC is that it tends to produce many unconnected
vertices, which are treated as centers. This means that the
SSL algorithm will query labels for them, even though the
obtained information is often not very useful, because the
queried labels are not representative for many other samples.
The same problem occurs in our approach when many satel-
lites of a given cluster center are detached and reconnected as
described. Therefore, we introduce a parameter !

min

, which
defines a lower bound on the average cluster size. Then,
each time a satellite u

j

i

should be detached from its center
ĉ

i

according to Eq. (8), we test whether the average cluster
size z̄

t

is still larger than w

min

. If this is not the case, all
vertices of the cluster represented by ĉ

i

are inserted into
the cluster that is closest to ĉ

i

. Note that z̄

t

at time t can
be easily computed from z̄ =

t

Ct
, because at time t there

are t vertices inserted in total and the number of clusters
is C

t

. The same procedure is done with the potentially new
cluster formed by v

t

as a center: As long as adding this
new cluster does not cause the average cluster size z̄ to be
smaller than !

min

, it can be added. Otherwise, it is not added
and v

t

is attached to its closest center, as above. To avoid
unnecessary re-connecting steps, we therefore wait until all
centers closest to v

t

are processed before we actually perform
the reconnection of satellites.

C. Label Propagation
As in the OSC+LP approach described above, our last step

is also label propagation. That is, if the newly added vertex
v

t

ends up as a new center, we query a ground truth label
for it and propagate this new label to the satellites attached
to v

t

. If v
t

has become a satellite, we propagate the label of
the corresponding center (which was queried earlier queried)
to it. Here, we note an important difference to the OSC
algorithm: in our approach, all satellite vertices are connected
to exactly one center. Therefore, Eq. (6) simplifies to a simple
“copy” of the label from the center to the satellites. Similarly,
Eq. (5) directly assigns the ground truth label to the labeled
center. Thus, by our graph construction, the LP method can
also be performed more efficiently.

D. Time-dependant Paramters
Two main parameters of our algorithm are the fraction q of

most similar centers considered and the lower bound !

min

on the average cluster size. For both, there is an implicit
dependence on the current size of the graph. In the beginning,
there are only few samples and the graph is sparse. Thus, the
fraction q of nearest neighbors can be larger, because nearest-
neighbor search will anyhow be very efficient. Similarly, the
minimal number of elements !

min

of an average cluster
can be larger when there are more vertices in the graph.
Therefore, we recompute q and !

min

at time step t as

!

t

min

= !

min

(1� e

�⌧⇤t
) (9)

q

t

= q(1� e

�⌧⇤t
), (10)

where ⌧ is a damping parameter.
Algorithm 1 summarizes all steps of our approach3. Note

that satellites are not actually disconnected until all centers
in ˆC have been considered and the new vertex forms a cluster
that is large enough (line 15-17). Clusters that are too small
are removed and all elements are assigned to the cluster that
is most similar to their center. This is the Recluster step.

Algorithm 1: Online Exemplar Based Clustering
Data: stream x

t

for t = 1, 2, . . .

Input: nearest-neighbor fraction q, damping factor ⌧ ,
min average cluster size !

min

Output: inferred or queried labels y

t
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i

) < !

t

min

then
13 Recluster(ĉ
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3An implementation of our approach in C++ is available at
https://github.com/mmmonkeytao/oscl.git.
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Fig. 5: Evaluation on the RGB-D data set based on V-
measure (violet), classification accuracy (blue) and number
of clusters per vertex (green). Left: Our approach. Right:
OSC+LP. Note that our approach significantly outperforms
the OSC+LP method in terms of accuracy and V-measure,
although there is no big difference in the number of clusters.

VI. EXPERIMENTS

We evaluated our approach on two different data sets: the
RGB-D data set provided by Lai et al. [20] with 41876
instances of 51 different object classes, and a subset of the
KITTI data set of 3D point clouds in an urban environment
[21], which contains objects from 7 classes, namely 1265
cars, 775 cyclists, 1035 Pedestrians, 957 vans, 667 trucks,
223 sitters and 257 bakground objects (misc). For both data
sets, we compute HMP features, while for point clouds we
first compute depth images (see Sec. III). For the HMP
features, we first learn a dictionary of size 75 on the first
level with K-SVD for depth and gray channels, and of size
150 for normal vectors and RGB channels. Then, on the
second level we learn dictionaries of size 500 for gray scale
and depth, and 1000 for RGB and normals. For each RGB-D
image we compute an HMP feature vector of length 42000.

A. Similarity Analysis
To find a good similarity measure (kernel) for our online

clustering algorithm, we ran a specific test on 10,000 samples
from the RGB-D data set. For each pair of images within
the same object class and across different object classes
we computed similarities and the corresponding average
similarities. The result for the Gaussian kernel and the
Inverse City Block (ICB) kernel are shown in Fig. 4. For
each class, a colored circle refers to the average similarity
with another class. Blue circles, which are connected with red
lines depict the average self-similarity of each class. Thus,
we can see that the self-similarity values tend to be better
for the ICB kernel than for the Gaussian kernel. Therefore,
in our following experiments, we only used the ICB kernel.

B. Online Learning of 3D Objects
To assess the performance of our approach we randomly

shuffle the 41876 different cropped images from the RGB-D
data set and present them to our online SSL algorithm. We
compare the results with the baseline method OSC+LP, de-
scribed in Sec. IV, where we use the following criteria. First,
the V1-measure [22], which is a measure for cluster quality
and consists of the harmonic mean between homogeneity and
completeness. Intuitively, homogeneity is closely related to
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Our approach generates significantly less label queries.
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features are only based on depth values and not on color.
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Fig. 7: Vertex insertion times for OSC (left) and our online
clustering approach (right). Note that our approach never
takes more than 0.5 seconds and that run time increases
initially, because more new clusters are created. Later, new
vertices often are satellites, which reduces the run time.

purity, i.e. it is high if clusters consist of many samples from
the same object class. In contrast, completeness is high if
many samples from an object class are in the same cluster
(for details see [22]). Our second criterion is the number of
clusters divided by the total number of vertices. Ideally, this
value should be low because then we have less label queries.
Finally, the third criterion is the classification accuracy, i.e.
the percentage of correctly classified samples.

Fig. 5 shows the results on the whole RGB-D data set,
where the left part shows our results, with !

min

= 25,
and the right part the ones obtained with OSC+LP with a
threshold # = 0.009. As we can see, our method outperforms
the OSC+LP algorithm both in terms of cluster homogeneity
and in final classification rate. At the same time, the number
of clusters produced by our algorithm is only slighty higher.
This is good, because the number of clusters is directly
related to the number of label queries. This is shown in Fig. 6
(left), where we plot the accumulated number of generated
label queries for both methods. We see that, compared to
OSC+LP our approach only requires very few ground truth
labels for learning. For the KITTI data we obtain the results
of Fig. 6 (right). Note that we only use a subset of the data
because the entire data set is very unbalanced between the
classes. We see that the classification is worse than the one
on RGB-D, but the feature vectors only contain depth values.

Furthermore, we compare our approach with OSC+LP in
terms of run time needed for a vertex insertion, as this was
also one of our main design goals. Fig. 7 (left) shows the
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Fig. 4: Comparison of two similarity measures (kernels). For each object class in the RGB-D data we show the average
similarity across classes as colored circles, and the self-similarity for each class (blue circles, connected with red lines).

insertion time for OSC+LP for each iteration (insertion) on
the RGB-D data. We can see one major peak at around
23000 observed samples. We relate this to an extremely
large amount of cluster rearrangements required at this stage.
Later, towards the end of the data set, the run time increases
again very quickly. In contrast, insertion in our algorithm
never takes more than 0.5 seconds (see right plot in Fig. 7).

VII. CONCLUSIONS

As we have shown, the combination of semi-supervised
learning methods with online clustering can be a very ef-
ficient approach for learning 3D object classes from large
data streams. However, a straightforward implementation
using standard Online Star Clustering and Label Propagation
results in a suboptimal performance, both in run time and in
accuracy, because OSC is not particularly designed for com-
bination with SSL. In contrast, if we modify the clustering
algorithm accordingly, we obtain impressive results for 3D
object classification with comparably little effort in terms of
run time and generated label queries. As a consequence, our
proposed method is very well suited for challenging online
classification tasks in mobile robotics.
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